Value-added hydrodeoxygenation conversion of biomass

https://doi.org/10.61187/bst.v1i1.10

Authors

  • Man Lang School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin 300130, China
  • Hao Li School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin 300130, China

Keywords:

Biomass, Hydrodeoxygenation, High value-added conversion, Clean energy

Abstract

Biomass hydrodeoxygenation conversion is an important technology for converting biomass waste into high-value-added chemicals and fuels. In this paper, the research progress of biomass hydrodeoxygenation conversion is reviewed, and the related catalysts and reactions are discussed. First, the background and significance of biomass hydrodeoxygenation conversion are introduced. Subsequently, the application of different catalysts in biomass hydrodeoxygenation conversion was discussed for different biomass feedstocks, such as phenols, ethers, acids, and furans. Finally, the challenges and future development directions of biomass hydrodeoxygenation conversion are proposed, such as improving the stability and selectivity of catalysts, optimizing reaction conditions and improving conversion efficiency, etc. This article aims to provide reference and guidance for further research on biomass hydrodeoxygenation conversion.

Downloads

Download data is not yet available.

References

A Vallabh S. Prabhudesai, Lakshmiprasad Gurrala, and Ravikrishnan Vinu, Catalytic Hydrodeoxygenation of Lignin-Derived Oxygenates: Catalysis, Mechanism, and Effect of Process Conditions Energy & Fuels 2022 36 (3), 1155-1188 DOI: https://doi.org/10.1021/acs.energyfuels.1c02640

Mishra, S.; Roy, M.; Mohanty, K., Microalgal bioenergy production under zero-waste biorefinery approach: Recent advances and future perspectives. Bioresource Technology 2019, 292, 122008. DOI: https://doi.org/10.1016/j.biortech.2019.122008

3. Zhang, Q.; Chang, J.; Wang, T.; Xu, Y., Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management 2007, 48 (1), 87-92. DOI: https://doi.org/10.1016/j.enconman.2006.05.010

Carlson, T. R.; Vispute, T. P.; Huber, G. W., Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds. ChemSusChem 2008, 1 (5), 397-400. DOI: https://doi.org/10.1002/cssc.200800018

Qu, L.; Jiang, X.; Zhang, Z.; Zhang, X.-g.; Song, G.-y.; Wang, H.-l.; Yuan, Y.-p.; Chang, Y.-l., A review of hydrodeoxygenation of bio-oil: model compounds, catalysts, and equipment. Green Chemistry 2021, 23 (23), 9348-9376. DOI: https://doi.org/10.1039/D1GC03183J

Li, X.; Zhang, J.; Liu, B.; Liu, J.; Wang, C.; Chen, G., Hydrodeoxygenation of lignin-derived phenols to produce hydrocarbons over Ni/Al-SBA-15 prepared with different impregnants. Fuel 2019, 243, 314-321. DOI: https://doi.org/10.1016/j.fuel.2019.01.126

Zhao, C.; Lercher, J. A., Upgrading Pyrolysis Oil over Ni/HZSM-5 by Cascade Reactions. Angewandte Chemie International Edition 2012, 51 (24), 5935-5940. DOI: https://doi.org/10.1002/anie.201108306

Sudarsanam, P.; Peeters, E.; Makshina, E. V.; Parvulescu, V. I.; Sels, B. F., Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews 2019, 48 (8), 2366-2421. DOI: https://doi.org/10.1039/C8CS00452H

Yujian Wu, Yan Sun, Kaili Liang, Zhengguang Yang, Ren Tu, Xudong Fan, Shuchao Cheng, Haipeng Yu, Enchen Jiang, and Xiwei XuACS Applied Materials & Interfaces 2021 13 (18), 21482-21498 DOI: https://doi.org/10.1021/acsami.1c05350

Li, F.; Srivatsa, S. C.; Bhattacharya, S., A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renewable and Sustainable Energy Reviews 2019, 108, 481-497. DOI: https://doi.org/10.1016/j.rser.2019.03.026

Wyman, C. E.; Dale, B. E.; Elander, R. T.; Holtzapple, M.; Ladisch, M. R.; Lee, Y. Y., Coordinated development of leading biomass pretreatment technologies. Bioresource Technology 2005, 96 (18), 1959-1966. DOI: https://doi.org/10.1016/j.biortech.2005.01.010

Bozell, J. J.; Petersen, G. R., Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry 2010, 12 (4), 539-554. DOI: https://doi.org/10.1039/b922014c

Lin, L.; Han, X.; Han, B.; Yang, S., Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chemical Society Reviews 2021, 50 (20), 11270-11292. DOI: https://doi.org/10.1039/D1CS00039J

Pang, S., Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances 2019, 37 (4), 589-597. DOI: https://doi.org/10.1016/j.biotechadv.2018.11.004

Nowakowski, D. J.; Jones, J. M.; Brydson, R. M. D.; Ross, A. B., Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel 2007, 86 (15), 2389-2402. DOI: https://doi.org/10.1016/j.fuel.2007.01.026

Zou, X.; Qin, T.; Huang, L.; Zhang, X.; Yang, Z.; Wang, Y., Mechanisms and Main Regularities of Biomass Liquefaction with Alcoholic Solvents. Energy & Fuels 2009, 23 (10), 5213-5218. DOI: https://doi.org/10.1021/ef900590b

Watson, J.; Zhang, Y.; Si, B.; Chen, W.-T.; de Souza, R., Gasification of biowaste: A critical review and outlooks. Renewable and Sustainable Energy Reviews 2018, 83, 1-17. DOI: https://doi.org/10.1016/j.rser.2017.10.003

Liu, Y.; Yuan, X.-z.; Huang, H.-j.; Wang, X.-l.; Wang, H.; Zeng, G.-m., Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol–water). Fuel Processing Technology 2013, 112, 93-99. DOI: https://doi.org/10.1016/j.fuproc.2013.03.005

Mukundan, S.; Konarova, M.; Atanda, L.; Ma, Q.; Beltramini, J., Guaiacol hydrodeoxygenation reaction catalyzed by highly dispersed, single layered MoS2/C. Catalysis Science & Technology 2015, 5 (9), 4422-4432. DOI: https://doi.org/10.1039/C5CY00607D

20. Lang, M.; Li, H., Toward Value-Added Arenes from Lignin-Derived Phenolic Compounds via Catalytic Hydrodeoxygenation. ACS Sustainable Chemistry & Engineering 2022, 10 (40), 13208-13243. DOI: https://doi.org/10.1021/acssuschemeng.2c04266

Mancio, A. A.; da Costa, K. M. B.; Ferreira, C. C.; Santos, M. C.; Lhamas, D. E. L.; da Mota, S. A. P.; Leão, R. A. C.; de Souza, R. O. M. A.; Araújo, M. E.; Borges, L. E. P.; Machado, N. T., Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels. Industrial Crops and Products 2016, 91, 32-43. DOI: https://doi.org/10.1016/j.indcrop.2016.06.033

Zelin, J.; Regenhardt, S. A.; Meyer, C. I.; Duarte, H. A.; Sebastian, V.; Marchi, A. J., Selective aqueous-phase hydrogenation of D-fructose into D-mannitol using a highly efficient and reusable Cu-Ni/SiO2 catalyst. Chemical Engineering Science 2019, 206, 315-326. DOI: https://doi.org/10.1016/j.ces.2019.05.042

Hita, I.; Cordero-Lanzac, T.; García-Mateos, F. J.; Azkoiti, M. J.; Rodríguez-Mirasol, J.; Cordero, T.; Bilbao, J., Enhanced production of phenolics and aromatics from raw bio-oil using HZSM-5 zeolite additives for PtPd/C and NiW/C catalysts. Applied Catalysis B: Environmental 2019, 259, 118112. DOI: https://doi.org/10.1016/j.apcatb.2019.118112

Davidian, T.; Guilhaume, N.; Iojoiu, E.; Provendier, H.; Mirodatos, C., Hydrogen production from crude pyrolysis oil by a sequential catalytic process. Applied Catalysis B: Environmental 2007, 73 (1), 116-127. DOI: https://doi.org/10.1016/j.apcatb.2006.06.014

Badawi, M.; Paul, J. F.; Cristol, S.; Payen, E.; Romero, Y.; Richard, F.; Brunet, S.; Lambert, D.; Portier, X.; Popov, A.; Kondratieva, E.; Goupil, J. M.; El Fallah, J.; Gilson, J. P.; Mariey, L.; Travert, A.; Maugé, F., Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: A combined experimental and DFT study. Journal of Catalysis 2011, 282 (1), 155-164. DOI: https://doi.org/10.1016/j.jcat.2011.06.006

Oh, S.; Hwang, H.; Choi, H. S.; Choi, J. W., The effects of noble metal catalysts on the bio-oil quality during the hydrodeoxygenative upgrading process. Fuel 2015, 153, 535-543. DOI: https://doi.org/10.1016/j.fuel.2015.03.030

Jang, M. S.; Phan, T. N.; Chung, I. S.; Lee, I.-G.; Park, Y.-K.; Ko, C. H., Metallic nickel supported on mesoporous silica as catalyst for hydrodeoxygenation: effect of pore size and structure. Research on Chemical Intermediates 2018, 44 (6), 3723-3735. DOI: https://doi.org/10.1007/s11164-018-3377-1

Massoth, F. E.; Politzer, P.; Concha, M. C.; Murray, J. S.; Jakowski, J.; Simons, J., Catalytic Hydrodeoxygenation of Methyl-Substituted Phenols: Correlations of Kinetic Parameters with Molecular Properties. The Journal of Physical Chemistry B 2006, 110 (29), 14283-14291. DOI: https://doi.org/10.1021/jp057332g

Nelson, R. C.; Baek, B.; Ruiz, P.; Goundie, B.; Brooks, A.; Wheeler, M. C.; Frederick, B. G.; Grabow, L. C.; Austin, R. N., Experimental and Theoretical Insights into the Hydrogen-Efficient Direct Hydrodeoxygenation Mechanism of Phenol over Ru/TiO2. ACS Catalysis 2015, 5 (11), 6509-6523. DOI: https://doi.org/10.1021/acscatal.5b01554

Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K., Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews 2018, 118 (2), 614-678. DOI: https://doi.org/10.1021/acs.chemrev.7b00588

Shu, R.; Li, R.; Lin, B.; Wang, C.; Cheng, Z.; Chen, Y., A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. biomass & bioenergy 2020, 132. DOI: https://doi.org/10.1016/j.biombioe.2019.105432

Das, A.; König, B., Transition metal- and photoredox-catalyzed valorisation of lignin subunits. Green Chemistry 2018, 20 (21), 4844-4852. DOI: https://doi.org/10.1039/C8GC02073F

He, J.; Chen, L.; Liu, S.; Song, K.; Yang, S.; Riisager, A., Sustainable access to renewable N-containing chemicals from reductive amination of biomass-derived platform compounds. Green Chemistry 2020, 22 (20), 6714-6747. DOI: https://doi.org/10.1039/D0GC01869D

Cheng, C.; Shen, D.; Gu, S.; Luo, K. H., State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catalysis Science & Technology 2018, 8 (24), 6275-6296. DOI: https://doi.org/10.1039/C8CY00845K

Saidi, M.; Rostami, P.; Rahimpour, H. R.; Roshanfekr Fallah, M. A.; Rahimpour, M. R.; Gates, B. C.; Raeissi, S., Kinetics of Upgrading of Anisole with Hydrogen Catalyzed by Platinum Supported on Alumina. Energy & Fuels 2015, 29 (8), 4990-4997. DOI: https://doi.org/10.1021/acs.energyfuels.5b00297

He, Z.; Wang, X., Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid. Journal of Energy Chemistry 2013, 22 (6), 883-894. DOI: https://doi.org/10.1016/S2095-4956(14)60268-0

Runnebaum, R. C.; Lobo-Lapidus, R. J.; Nimmanwudipong, T.; Block, D. E.; Gates, B. C., Conversion of Anisole Catalyzed by Platinum Supported on Alumina: The Reaction Network. Energy & Fuels 2011, 25 (10), 4776-4785. DOI: https://doi.org/10.1021/ef2010699

He, T.; Liu, X.; Ge, Y.; Han, D.; Li, J.; Wang, Z.; Wu, J., Gas phase hydrodeoxygenation of anisole and guaiacol to aromatics with a high selectivity over Ni-Mo/SiO2. Catalysis Communications 2017, 102, 127-130. DOI: https://doi.org/10.1016/j.catcom.2017.09.011

Lu, Q.; Chen, C.-J.; Luc, W.; Chen, J. G.; Bhan, A.; Jiao, F., Ordered Mesoporous Metal Carbides with Enhanced Anisole Hydrodeoxygenation Selectivity. ACS Catalysis 2016, 6 (6), 3506-3514. DOI: https://doi.org/10.1021/acscatal.6b00303

40. Murugappan, K.; Anderson, E. M.; Teschner, D.; Jones, T. E.; Skorupska, K.; Román-Leshkov, Y., Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nature Catalysis 2018, 1 (12), 960-967. DOI: https://doi.org/10.1038/s41929-018-0171-9

Mendes, M. J.; Santos, O. A. A.; Jordão, E.; Silva, A. M., Hydrogenation of oleic acid over ruthenium catalysts. Applied Catalysis A: General 2001, 217 (1), 253-262. DOI: https://doi.org/10.1016/S0926-860X(01)00613-5

Santos, S. M.; Silva, A. M.; Jordão, E.; Fraga, M. A., Hydrogenation of dimethyl adipate over bimetallic catalysts. Catalysis Communications 2004, 5 (7), 377-381. DOI: https://doi.org/10.1016/j.catcom.2004.05.002

Sajid, M.; Farooq, U.; Bary, G.; Azim, M. M.; Zhao, X., Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: progress, challenges, and prospects. Green Chemistry 2021, 23 (23), 9198-9238. DOI: https://doi.org/10.1039/D1GC02919C

Song, S.; Yao, S.; Cao, J.; Di, L.; Wu, G.; Guan, N.; Li, L., Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Applied Catalysis B: Environmental 2017, 217, 115-124. DOI: https://doi.org/10.1016/j.apcatb.2017.05.073

Dutta, S.; Yu, I. K. M.; Tsang, D. C. W.; Ng, Y. H.; Ok, Y. S.; Sherwood, J.; Clark, J. H., Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal 2019, 372, 992-1006. DOI: https://doi.org/10.1016/j.cej.2019.04.199

Zhong, H.; Li, Q.; Liu, J.; Yao, G.; Wang, J.; Zeng, X.; Huo, Z.; Jin, F., New Method for Highly Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone in Water without Precious Metal Catalysts. ACS Sustainable Chemistry & Engineering 2017, 5 (8), 6517-6523. DOI: https://doi.org/10.1021/acssuschemeng.7b00623

Xu, Q.; Li, X.; Pan, T.; Yu, C.; Deng, J.; Guo, Q.; Fu, Y., Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chemistry 2016, 18 (5), 1287-1294. DOI: https://doi.org/10.1039/C5GC01454A

Furimsky, E., The mechanism of catalytic hydrodeoxygenation of furan. Applied Catalysis 1983, 6 (2), 159-164. DOI: https://doi.org/10.1016/0166-9834(83)80261-9

Kim, S.; Kwon, E. E.; Kim, Y. T.; Jung, S.; Kim, H. J.; Huber, G. W.; Lee, J., Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chemistry 2019, 21 (14), 3715-3743. DOI: https://doi.org/10.1039/C9GC01210A

Kreuzer, K.; Kramer, R., Support Effects in the Hydrogenolysis of Tetrahydrofuran on Platinum Catalysts. Journal of Catalysis 1997, 167 (2), 391-399. DOI: https://doi.org/10.1006/jcat.1997.1608

Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F., Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews 2020, 49 (13), 4273-4306. DOI: https://doi.org/10.1039/D0CS00041H

Zhang, Z.; Huber, G. W., Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews 2018, 47 (4), 1351-1390. DOI: https://doi.org/10.1039/C7CS00213K

53. Wang, T.; Nolte, M. W.; Shanks, B. H., Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chemistry 2014, 16 (2), 548-572. DOI: https://doi.org/10.1039/C3GC41365A

Han, W.; Tang, M.; Li, J.; Li, X.; Wang, J.; Zhou, L.; Yang, Y.; Wang, Y.; Ge, H., Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran catalyzed by ordered mesoporous alumina supported nickel-molybdenum sulfide catalysts. Applied Catalysis B: Environmental 2020, 268, 118748. DOI: https://doi.org/10.1016/j.apcatb.2020.118748

Zhang, Z.; Yao, S.; Wang, C.; Liu, M.; Zhang, F.; Hu, X.; Chen, H.; Gou, X.; Chen, K.; Zhu, Y.; Lu, X.; Ouyang, P.; Fu, J., CuZnCoOx multifunctional catalyst for in situ hydrogenation of 5-hydroxymethylfurfural with ethanol as hydrogen carrier. Journal of Catalysis 2019, 373, 314-321. DOI: https://doi.org/10.1016/j.jcat.2019.04.011

Gan, T.; Liu, Y.; He, Q.; Zhang, H.; He, X.; Ji, H., Facile Synthesis of Kilogram-Scale Co-Alloyed Pt Single-Atom Catalysts via Ball Milling for Hydrodeoxygenation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering 2020, 8 (23), 8692-8699. DOI: https://doi.org/10.1021/acssuschemeng.0c02065

Published

2023-06-30

How to Cite

Lang, M., & Li, H. (2023). Value-added hydrodeoxygenation conversion of biomass. Biomass Science & Technology, 1(1), 1–8. https://doi.org/10.61187/bst.v1i1.10