Utilization and development of biomass energy

https://doi.org/10.61187/esp.v1i1.12

Authors

  • Yifan Cheng School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, China
  • Hao Li School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, China

Keywords:

biomass, development, energy status, challenges

Abstract

As the depletion of fossil fuels becomes increasingly severe, it is crucial to find alternative and sustainable sources of energy. Biomass, which is the largest renewable energy source in the world, is considered an effective solution to the problem of fossil fuel scarcity due to its sustainability, eco-friendly nature, and the wide range of raw materials available. This paper analyzes the current energy situation, energy policies, opportunities, and challenges of biomass energy development in several countries across Europe, Asia, and America. Based on the research results, most countries are proactively seeking to transform their energy systems to ensure sustainable economic development, particularly by utilizing solid biomass, which includes the recycling of industrial and agricultural residues and the cultivation of energy crops. However, biomass energy also faces challenges such as the impact on biodiversity, complex production processes, and high costs.

Downloads

Download data is not yet available.

References

Popp J, Kovacs S, Olah J, et al. Bioeconomy: Biomass and biomass-based energy supply and demand[J]. New biotechnology, 2021. DOI: https://doi.org/10.1016/j.nbt.2020.10.004

BP. Statistical review of world energy[R]. London: British Petroleum,2021.

Bilgili F, E Koçak, Ümit Bulut, et al. Can biomass energy be an efficient policy tool for sustainable development?[J]. Renewable and Sustainable Energy Reviews, 2017. DOI: https://doi.org/10.1016/j.rser.2016.12.109

Agriculture biomass in India: Part 1. Estimation and characterization[J]. Resources Conservation and Recycling, 2015, 102C:39-48. DOI: https://doi.org/10.1016/j.resconrec.2015.06.003

Li L, Liang T, Liu W, et al. A Comprehensive Review of the Mycelial Pellet: Research Status, Applications, and Future Prospects[J]. Industrial And Engineering Chemistry Research, 2020, 59(39):16911-16922. DOI: https://doi.org/10.1021/acs.iecr.0c01325

Recent Advances in Hydroliquefaction of Biomass for Bio-oil Production Using In Situ Hydrogen Donors[J]. Industrial And Engineering Chemistry Research, 2020, 59(39):16987-17007. DOI: https://doi.org/10.1021/acs.iecr.0c01649

Lu J, Peng W, Lv Y, et al. Application of Cell Immobilization Technology in Microbial Cocultivation Systems for Biochemicals Production[J]. Industrial & Engineering Chemistry Research, 2020, XXXX(XXX). DOI: https://doi.org/10.1021/acs.iecr.0c01867

Hou Y, Niu M, Wu W . Catalytic Oxidation of Biomass to Formic Acid Using O 2 as an Oxidant[J]. 2020. DOI: https://doi.org/10.1021/acs.iecr.0c01088

Xu L, Zhang S J, Zhong C, et al. Alkali-Based Pretreatment-Facilitated Lignin Valorization: A Review[J]. Industrial & Engineering Chemistry Research, 2020, 59(39):16923-16938. DOI: https://doi.org/10.1021/acs.iecr.0c01456

Cooreman E, Vangeel T, Aelst K V, et al. Perspective on Overcoming Scale-Up Hurdles for the Reductive Catalytic Fractionation of Lignocellulose Biomass[J]. Industrial & Engineering Chemistry Research, 2020, XXXX(XXX). DOI: https://doi.org/10.1021/acs.iecr.0c02294

Advances in Heterogeneously Catalytic Degradation of Biomass Saccharides with Ordered-Nanoporous Materials[J]. Industrial And Engineering Chemistry Research, 2020, 59(39):16970-16986. DOI: https://doi.org/10.1021/acs.iecr.0c01625

Fu J, Zhang Z, Ren Q . The Future of Biomass Utilization Technologies Special Issue Editorial[J]. Industrial And Engineering Chemistry Research, 2020, 59(39):16895-16898. DOI: https://doi.org/10.1021/acs.iecr.0c03933

Eurostat SHARES Tool, 2019. https://ec.europa.eu/eurostat/web/energy/data/shares.

NREAPs and Progress Reports Data Portal Retrieved in 2018 from. https://ec.europa.eu/jrc/en/scientific-tool/nreap-data-portal.

Banja M, Sikkema R, M Jégard, et al. Biomass for energy in the EU – The support framework[J]. Energy Policy, 2019, 131. DOI: https://doi.org/10.1016/j.enpol.2019.04.038

RVO, 2018. Sustainability Criteria for Solid Biomass in the Netherlands (English Version).Retrievd from. https://english.rvo.nl/subsidies-programmes/sde/sustainability- criteria.

Link P M, J Böhner, Held H, et al. Energy Landscapes: Modeling of Renewable Energy Resources with an Emphasis on Northern Germany[J]. Bulletin of the American Meteorological Society, 2017, 99(April 2018):ES71-ES73. DOI: https://doi.org/10.1175/BAMS-D-17-0295.1

Elbersen B, Startisky I, Hengeveld G, Schelhaas MJ, Naeff H, Bottcher H. Atlas of EU biomass potentials. Delivrable 3.3: Spatially detailed and quantified overview of EU biomass potential taking into account the main criteria determining biomass availability from different sources; 2012. p. 139.

Croatian environment agency.–Corine Land Cover Croatia; CLC Brochure. Zagreb, Croatia; 2012.

Nikola, Bilandzija, Neven, et al. Evaluation of Croatian agricultural solid biomass energy potential[J]. Renewable and Sustainable Energy Reviews, 2018(93). DOI: https://doi.org/10.1016/j.rser.2018.05.040

Ghafoor A, Munir A . Design and economics analysis of an off-grid PV system for household electrification[J]. Renewable and Sustainable Energy Reviews, 2015, 42:496-502. DOI: https://doi.org/10.1016/j.rser.2014.10.012

Irfan M, Zhao Z Y, Ahmad M, et al. Solar Energy Development in Pakistan: Barriers and Policy Recommendations[J]. Sustainability, 2019, 11(4). DOI: https://doi.org/10.3390/su11041206

Irfan M, Zhao Z Y, Ahmad M, et al. A Techno-Economic Analysis of Off-Grid Solar PV System: A Case Study for Punjab Province in Pakistan[J]. Processes, 2019, 7(10):708-. DOI: https://doi.org/10.3390/pr7100708

Division G F . Pakistan Economic Survey 2018-19. 2019.

Irfan M, Zhao Z Y, Panjwani M K, et al. Assessing the energy dynamics of Pakistan: Prospects of biomass energy[J]. Energy Reports, 2019, 6:80-93. DOI: https://doi.org/10.1016/j.egyr.2019.11.161

Javed M S, Raza R, Hassan I, et al. The energy crisis in Pakistan: A possible solution via biomass-based waste[J]. Journal of Renewable & Sustainable Energy, 2016, 8(4):1216-1226. DOI: https://doi.org/10.1063/1.4959974

Amer M, Daim T U . Selection of renewable energy technologies for a developing county: A case of Pakistan[J]. Energy for Sustainable Development, 2011, 15(4): 420-435. DOI: https://doi.org/10.1016/j.esd.2011.09.001

Plessis, L., 2015. Japan's Biomass Market Overview. Japan External Trade Organi-zation(JETRO).Available at:https://www.jetro.go.jp/ext_images/_Events/ldn/Japan_biomass_market_overview.pdf (Accessed 2023-05-17).

A P P, B M E . Implications of paradigm shift in Japan's electricity security of supply: A multi-dimensional indicator assessment - ScienceDirect[J]. Applied Energy, 2014, 123:424-434. DOI: https://doi.org/10.1016/j.apenergy.2014.01.024

Amemiya, T.; Denou, M.; Enomoto, H.; Ito, T.; Kaibe, K.; Sawada, N.; Tomari, M.; Matsumura, Y. Feasible Conditions for Japanese Woody Biomass Utilization. Environ. Sci. Pollut. Res. 2021, 28 (37), 51060–51071. https://doi.org/10.1007/s11356-021-13966-8. DOI: https://doi.org/10.1007/s11356-021-13966-8

Forests and forestry in Japan[J]. Forestry Journal, 1999.

Ahl, A.; Eklund, J.; Lundqvist, P.; Yarime, M. Balancing Formal and Informal Success Factors Perceived by Supply Chain Stakeholders: A Study of Woody Biomass Energy Systems in Japan. J. Clean. Prod. 2018, 175, 50–59. https://doi.org/10.1016/j.jclepro.2017.11.108. DOI: https://doi.org/10.1016/j.jclepro.2017.11.108

Battuvshin B, Matsuoka Y, Shirasawa H, et al. Supply potential and annual availability of timber and forest biomass resources for energy considering inter-prefectural trade in Japan[J]. Land Use Policy, 2020, 97. DOI: https://doi.org/10.1016/j.landusepol.2020.104780

U.S. Energy Information Administration, 2020a. Annual energy review. https://www.eia.gov/totalenergy/data/annual/index.php (Accessed 4 June 2023).

U.S. Energy Information Administration, 2020b. In 2019, U.S. energy production exceeded consumption for the first time in 62 years. https://www.eia.gov/todayinenergy/detail.php?id=43515 (Accessed 4 June 2023).

Our World in Data, 2021. Fossil Fuel Consumption Per Capita, 2021. Available from: Fossil fuel consumption per capita, 2021 (ourworldindata.org). (Accessed 4 June 2023).

U.S. Energy information administration (EIA). https://www.eia.gov; 2019.

Hossain, M. R.; Singh, S.; Sharma, G. D.; Apostu, S.-A.; Bansal, P. Overcoming the Shock of Energy Depletion for Energy Policy? Tracing the Missing Link between Energy Depletion, Renewable Energy Development and Decarbonization in the USA. Energy Policy 2023, 174, 113469. DOI: https://doi.org/10.1016/j.enpol.2023.113469

Ho Lam C, Das S, Erickson N C, Hyzer C D, Garedew M, Anderson J E, et al. Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustain Energy Fuels 2017;1:258-66. DOI: https://doi.org/10.1039/C6SE00080K

Energy Information Administration (EIA 2014), Monthly Energy Review, Short- Term Energy Outlook.

Hansen S, Mirkouei A, Diaz L A .A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 118. DOI: https://doi.org/10.1016/j.rser.2019.109548

[42] Aslan A . The causal relationship between biomass energy use and economic growth in the United States[J]. Renewable & Sustainable Energy Reviews, 2016, 57(May): 362-366. DOI: https://doi.org/10.1016/j.rser.2015.12.109

US Department of Energy. Billion-ton report: advancing domestic resources for a thriving bioeconomy, volume 1: economic availability of feedstocks Oak Ridge: Oak Ridge National Laboratory, TN; 2016. https://doi.org/10.2172/1271651 M. H. Langholtz, B. J. Stokes, and L. M. Eaton (Leads), ORNL/TM-2016/160., Accessed date: 4 June 2023.

US Energy Information Administration, reportMonthly densified biomass fuel re- port data archive (aug 16, 2018 update) Washington D.C. https://www.eia.gov/ biofuels/biomass/ Accessed 4 June 2023.

Bracmort K. Is Biopower Carbon Neutral?[J]. Congressional Research Service Reports, 2015.

Lauri P, Havlik P, Kindermann G, et al. Woody biomass energy potential in 2050[J]. Energy Policy, 2014, 66(MAR.):19-31. DOI: https://doi.org/10.1016/j.enpol.2013.11.033

Cherubini F, Strømman A H. Life cycle assessment of bioenergy systems: State of the art and future challenges[J]. Bioresource Technology, 2011, 102(2): 437-451. DOI: https://doi.org/10.1016/j.biortech.2010.08.010

Nguyen T, Hermansen J E, Mogensen L. Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark[J]. Applied Energy, 2013, 104(APR.): 633-641. DOI: https://doi.org/10.1016/j.apenergy.2012.11.057

Nguyen T, Hermansen J E. Life cycle environmental performance of miscanthus gasification versus other technologies for electricity production[J]. Sustainable Energy Technologies & Assessments, 2015, 9(mar.): 81-94. DOI: https://doi.org/10.1016/j.seta.2014.12.005

Pörtner, H.O., Scholes, R.J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W.L., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Jacob, U., Insarov, G., Kiessling, W., Leadley, P., Leemans, R., Levin, L., Lim, M., Maharaj, S., Managi, S., Marquet, P. A., McElwee, P., Midgley, G., Oberdorff, T., Obura, D., Osman, E., Pandit, R., Pascual, U., Pires, A. P. F., Popp, A., ReyesGarcía, V., Sankaran, M., Settele, J., Shin, Y. J., Sintayehu, D. W., Smith, P., Steiner, N., Strassburg, B., Sukumar, R., Trisos, C., Val, A.L., Wu, J., Aldrian, E., Parmesan, C., Pichs-Madruga, R., Roberts, D.C., Rogers, A.D., Díaz, S., Fischer, M., Hashimoto, S., Lavorel, S., Wu, N., Ngo, H.T. 2021. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change; IPBES and IPCC.

Rösch, C.; Bräutigam, K.-R.; Kopfmüller, J.; Stelzer, V.; Fricke, A. Sustainability Assessment of the German Energy Transition[J]. Energy Sustain. Soc, 2018, 8 (1): 12. https://doi.org/10.1186/s13705-018-0153-4. DOI: https://doi.org/10.1186/s13705-018-0153-4

Kumar, A., & Singh, D. A review on biomass energy resources, potential, conversion and policy in India. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4715-4726.

Hasan, A., & Laskar, M. A. (2018). Energy Density Comparison of the Preparation of Char from Different Agro-waste[J]. Energy and Fuels, 2018, 32(8): 8615-8623.

Published

2023-06-30

How to Cite

Cheng, Y., & Li, H. (2023). Utilization and development of biomass energy. Energy Science & Policy, 1(1), 1–6. https://doi.org/10.61187/esp.v1i1.12