Functional Catalyst Molecular Sieves in Green Chemical Applications

https://doi.org/10.61187/esp.v1i2.51

Authors

  • Tao Feng National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
  • Hao Li National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China

Keywords:

Molecular sieve, Green catalyst, Green chemical industry

Abstract

With the development of green chemical industry and the continuous improvement of environmental awareness, the application of various catalysts in environmental protection has been widely concerned. As a green catalyst, molecular sieve catalyst has superior environmental performance, which is mainly reflected in its ability to improve the selectivity of reaction products, can be reused, good thermal stability and strong adaptability. This paper mainly introduces the types, development history, synthesis technology and application of zeolite catalysts, due to the development of science and technology, a large number of new synthetic zeolite catalysts are used in the field of catalysis and meet the requirements of green chemistry, and its synthesis technology is gradually trending towards environmental protection with the development of green chemistry. Zeolite catalysts are widely used in chemical industry and other fields, and their green environmental protection performance promotes the development of chemical processes in the direction of green chemicals.

Downloads

Download data is not yet available.

References

Zhang, X., Liu, C., Ren, Q., et al. Green chemical engineering in China. Reviews in Chemical Engineering, 2019, 35(8), 995-1077. https://doi.org/10.1515/revce-2017-0038 DOI: https://doi.org/10.1515/revce-2017-0038

Dai, X., Cheng, Y., Si, M., et al. Synthesis of nickel in situ modified SAPO-11 molecular sieves and hydroisomerization performance of their NiWS supported catalysts. Frontiers in Chemistry, 2021, 9, 765573. https://doi.org/10.3389/fchem.2021.765573

Gao, S., Liu, Z., Xu, S., et al. Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy. Journal of Catalysis, 2019, 377, 51-62. https://doi.org/10.1016/j.jcat.2019.07.010 DOI: https://doi.org/10.1016/j.jcat.2019.07.010

Xu, J., Wang, H., Guo, F., Zhang, et al. Recent advances in supported molecular sieve catalysts with wide temperature range for selective catalytic reduction of NO X with C 3 H 6. RSC advances, 2019, 9(2), 824-838. https://doi.org/10.1039/C8RA08635D DOI: https://doi.org/10.1039/C8RA08635D

Roldán, R., Romero, F. J., Jiménez, C., et al. Transformation of mixtures of benzene and xylenes into toluene by transalkylation on zeolites. Applied Catalysis A: General, 2004, 266(2), 203-210. https://doi.org/10.1016/j.apcata.2004.02.008 DOI: https://doi.org/10.1016/j.apcata.2004.02.008

Carlson, T. R., Vispute, T. P., Huber, G. W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2008, 1(5), 397-400. https://doi.org/10.1002/cssc.200800018 DOI: https://doi.org/10.1002/cssc.200800018

Huo, Q., Margolese, D. I., Ciesla, U., et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 1994, 368(6469), 317-321. ttps://doi.org/10.1038/368317a0 DOI: https://doi.org/10.1038/368317a0

Shiralkar, V. P., Joshi, P. N., Eapen, M. J., et al. Synthesis of ZSM-5 with variable crystallite size and its influence on physicochemical properties. Zeolites, 1991, 11(5), 511-516. https://doi.org/10.1016/S0144-2449 05 80127-7 DOI: https://doi.org/10.1016/S0144-2449(05)80127-7

Pu, S. B., & Inui, T. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2, 7-dimethylnaphthalene isomerization. Zeolites, 1996, 17(4), 334-339. https://doi.org/10.1016/0144-2449 96 00083-8 DOI: https://doi.org/10.1016/0144-2449(96)00083-8

Yamamura, M., Chaki, K., Wakatsuki, T., et al. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites, 1994, 14(8), 643-649. https://doi.org/10.1016/0144-2449 94 90121-X DOI: https://doi.org/10.1016/0144-2449(94)90121-X

Sun, Q., Xie, Z., Yu, J. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. National Science Review, 2018, 5(4), 542-558. https://doi.org/10.1093/nsr/nwx103 DOI: https://doi.org/10.1093/nsr/nwx103

Shan, Y., Du, J., Zhang, Y., et al. Selective catalytic reduction of NO x with NH3: Opportunities and challenges of Cu-based small-pore zeolites. National science review, 2021, 8(10), nwab010. https://doi.org/10.1093/nsr/nwab010 DOI: https://doi.org/10.1093/nsr/nwab010

Baerlocher, C., McCusker, L. B., Gies, H., et al. Database of Disordered Zeolite Structures, 1996.

Ward, J. W. The nature of active sites on zeolites: I. The decationated Y zeolite. Journal of catalysis, 1967, 9(3), 225-236. https://doi.org/10.1016/0021-9517 67 90248-5 DOI: https://doi.org/10.1016/0021-9517(67)90248-5

Król, M. Natural vs. Synthetic zeolites. Crystals, 2020, 10(7), 622. https://doi.org/10.3390/cryst10070622 DOI: https://doi.org/10.3390/cryst10070622

Long, X., Zhang, Q., Liu, Z. T., et al. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2013, 134, 381-388. https://doi.org/10.1016/j.apcatb.2013.01.034 DOI: https://doi.org/10.1016/j.apcatb.2013.01.034

Yarulina, I., Bailleul, S., Pustovarenko, A., et al. Suppression of the aromatic cycle in methanol‐to‐olefins reaction over ZSM‐5 by post‐synthetic modification using calcium. ChemCatChem, 8(19), 3057-3063. Chem Cat Chem, 2016, 8(19): 3057-3063. https://doi.org/10.1002/cctc.201600650 DOI: https://doi.org/10.1002/cctc.201600650

Blasco, T., Corma, A., Martínez-Triguero, J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of catalysis, 2006, 237(2), 267-277. https://doi.org/10.1016/j.jcat.2005.11.011 DOI: https://doi.org/10.1016/j.jcat.2005.11.011

Manrique, C., Guzmán, A., Pérez-Pariente, J., et al. Effect of synthesis conditions on zeolite Beta properties and its performance in vacuum gas oil hydrocracking activity. Microporous and Mesoporous Materials, 2016, 234, 347-360. https://doi.org/10.1016/j.micromeso.2016.07.017 DOI: https://doi.org/10.1016/j.micromeso.2016.07.017

Baran, R., Averseng, F., Wierzbicki, D., et al. Effect of postsynthesis preparation procedure on the state of copper in CuBEA zeolites and its catalytic properties in SCR of NO with NH3. Applied Catalysis A: General, 2016, 523, 332-342.https://doi.org/10.1016/j.apcata.2016.06.008 DOI: https://doi.org/10.1016/j.apcata.2016.06.008

Madden, D., & Curtin, T. Carbon dioxide capture with amino-functionalised zeolite-β: A temperature programmed desorption study under dry and humid conditions. Microporous and Mesoporous Materials, 2016, 228, 310-317. https://doi.org/10.1016/j.micromeso.2016.03.041 DOI: https://doi.org/10.1016/j.micromeso.2016.03.041

Widayatno, W. B., Guan, G., Rizkiana, J., et al. Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability. Applied Catalysis B: Environmental, 2016, 186, 166-172. https://doi.org/10.1016/j.apcatb.2016.01.006 DOI: https://doi.org/10.1016/j.apcatb.2016.01.006

Dos Santos, L. R. M., Da Silva, et al. Creation of mesopores and structural re-organization in Beta zeolite during alkaline treatment. Microporous and Mesoporous Materials, 2016, 226, 260-266. https://doi.org/10.1016/j.micromeso.2016.01.032 DOI: https://doi.org/10.1016/j.micromeso.2016.01.032

Kim, T. W., Kim, S. Y., Kim, J. C., et al. Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts. Applied Catalysis B: Environmental, 2016, 185, 100-109. https://doi.org/10.1016/j.apcatb.2015.11.046 DOI: https://doi.org/10.1016/j.apcatb.2015.11.046

Yang, W., Wang, Z., Sun, H. Advances in development and industrial applications of ethylbenzene processes. Chinese Journal of Catalysis, 2016, 37(1), 16-26. https://doi.org/10.1016/S1872-2067 15 60965-2 DOI: https://doi.org/10.1016/S1872-2067(15)60965-2

Sheemol, V. N., Tyagi, B., & Jasra, R. V. Acylation of toluene using rare earth cation exchanged zeolite β as solid acid catalyst. Journal of Molecular Catalysis A: Chemical, 2004, 215(1-2), 201-208. https://doi.org/10.1016/j.molcata.2004.02.002 DOI: https://doi.org/10.1016/j.molcata.2004.02.002

Wang Y., Yu S., Li Y., et al. Effect of water vapor treatment conditions on the catalytic performance of MTBE synthesis of β zeolite. Chemical Reaction Engineering and Technology, 2001, 17(1), 35-38. https://doi.org/10.3969/j.issn.1001-7631.2001.01.007

Wang Y., Yu S., Li Y., et al. Study on methanol and isobutylene etheration reaction on modified β zeolite. Acta Petrolei Sinica (Petroleum Processing), 2001, 17(S1), 32-35. https://doi.org/10.3969/j.issn.1001-8719.2001.z1.005

Bai, G., Ma, Z., Shi, L., et al. Continuous synthesis of bis (indolyl) phenylmethane over acid modified Hβ zeolite. Applied Catalysis A: General, 2021, 427, 114-118. https://doi.org/10.1016/j.apcata.2012.03.040 DOI: https://doi.org/10.1016/j.apcata.2012.03.040

Dai, X., Cheng, Y., Si, M., et al. Synthesis of nickel in situ modified SAPO-11 molecular sieves and hydroisomerization performance of their NiWS supported catalysts. Frontiers in Chemistry, 2021, 9, 765573. https://doi.org/10.3389/fchem.2021.765573 DOI: https://doi.org/10.3389/fchem.2021.765573

Murthy, K. V. V. S. B. S. R., Kulkarni, S. J., & Masthan, S. K. Sorption properties of modified silicoaluminophosphate (SAPO)-5 and SAPO-11 molecular sieves. Microporous and mesoporous materials, 2001, 43(2), 201-209. https://doi.org/10.1016/S1387-1811 00 00364-4 DOI: https://doi.org/10.1016/S1387-1811(00)00364-4

Li, X., Wang, L., Shi, Y., et al. Study on n-hexane isomerization catalyst Pd/SAPO-11. Oil & Gas Chemical Industry, 2003, 32(4), 211- 213.

Zhang, L., Chen, D., Nie, H. Y., et al. A study of the formation of microporous material SAPO-37. Microporous and mesoporous materials, 2013, 175, 147-156. https://doi.org/10.1016/j.micromeso.2013.03.026 DOI: https://doi.org/10.1016/j.micromeso.2013.03.026

Xu, X., Xu, H., Kapteijn, F., et al. SBA-15 based catalysts in catalytic N2O decomposition in a model tail-gas from nitric acid plants. Applied Catalysis B: Environmental, 2004, 53(4), 265-274. https://doi.org/10.1016/j.apcatb.2004.04.023 DOI: https://doi.org/10.1016/j.apcatb.2004.04.023

Calleja, G., Sanz, R., Arencibia, A., et al. Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2. Topics in Catalysis, 2011, 54, 135-145. https://doi.org/10.1007/s11244-011-9652-7 DOI: https://doi.org/10.1007/s11244-011-9652-7

Souza, L. K., Pardauil, J. J., Zamian, J. R., et al. Rapid synthesis and characterization of CeMCM-41. Powder technology, 2012, 229, 1-6. https://doi.org/10.1016/j.powtec.2012.04.043 DOI: https://doi.org/10.1016/j.powtec.2012.04.043

Kondru, A. K., Kumar, P., & Chand, S. Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst. Journal of Hazardous Materials, 2009, 166(1), 342-347. https://doi.org/10.1016/j.jhazmat.2008.11.042 DOI: https://doi.org/10.1016/j.jhazmat.2008.11.042

Ren P. Synthesis of microporous-mesoporous EU-1 zeolite by soft/hard template method. Taiyuan, Taiyuan University of Technology, 2020.

Kang, M., Yi, S. H., Lee, H. I., et al. Reversible replication between ordered mesoporous silica and mesoporous carbon. Chemical communications, 2002, (17), 1944-1945. https://doi.org/10.1039/B203962A DOI: https://doi.org/10.1039/b203962a

Meng X., Wang Y., & Xiao F. A method for synthesizing ZSM-22 molecular sieve without organic templates and crystal seeds. China, CN104671252A, 2015.

Zhang T. Study on the synthesis of SAPO-34 zeolite and its MTO performance by mother liquor induction method. Qingdao, China University of Petroleum (East China), 2021.

B. Yelmaz, U. Miller, F. Ozakrim, et al. A method for synthesizing zeolite materials using recycled mother liquor without organic templates. China, CN103917492A, 2014.

Liu L. Synthesis of high-silicon ZSM-5 zeolite by solid-phase grinding and its adsorption performance of VOCs. Shenzhen, South China University of Technology, 2021.

Meng X., Jin Y., Sun Q., et al. Patent for a mobile biomass microwave pyrolysis device. China, CN103121698A, 2013.

Isoda, T., Kusakabe, K., Morooka, S., et al. Reactivity and selectivity for the hydrocracking of vacuum gas oil over metal-loaded and dealuminated Y-zeolites. Energy & fuels, 1998, 12(3), 493-502. https://doi.org/10.1021/ef970136r DOI: https://doi.org/10.1021/ef970136r

Dong, Y., Zhang, W., & Tao, Y. CTAB modified TiO2 supported on HZSM-5 zeolite for enhanced photocatalytic degradation of azophloxine. Journal of Materials Research and Technology, 2020, 9(4), 9403-9411. https://doi.org/10.1016/j.jmrt.2020.05.091 DOI: https://doi.org/10.1016/j.jmrt.2020.05.091

Shiraishi, Y., Naito, T., & Hirai, T. Vanadosilicate molecular sieve as a catalyst for oxidative desulfurization of light oil. Industrial & engineering chemistry research, 2003, 42(24), 6034-6039. https://doi.org/10.1021/ie030328b DOI: https://doi.org/10.1021/ie030328b

Su, J., Chen, C., Guo Y., et al. OMS-2-based catalysts with controllable hierarchical morphologies for highly efficient catalytic oxidation of formaldehyde, Journal of Hazardous Materials. Journal of Hazardous Materials, 2019, 380, 120890. https://doi.org/10.1016/j.jhazmat.2019.120890 DOI: https://doi.org/10.1016/j.jhazmat.2019.120890

Liu, L. Synthesis of high-silicon ZSM-5 zeolite by solid-phase grinding and its adsorption performance of VOCs. Shenzhen, Suuth China University of Technology, 2021.

Pujado, P. R., Rabo, J. A., Antos, G. J., et al. (1992). Industrial catalytic applications of molecular sieves. Catalysis Today, 1992, 13(1), 113-141. https://doi.org/10.1016/0920-5861(92)80191-O DOI: https://doi.org/10.1016/0920-5861(92)80191-O

Published

2023-12-30

How to Cite

Feng, T., & Li, H. (2023). Functional Catalyst Molecular Sieves in Green Chemical Applications. Energy Science & Policy, 1(2), 1–10. https://doi.org/10.61187/esp.v1i2.51