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Abstract: To achieve weight reduction and enhance the firing accuracy of a specific type of launch 

device, the bracket was selected as the optimization subject for multi-objective topology optimiza-

tion. Single-objective optimization often overlooks other influencing factors. To address the limita-

tions of single-objective optimization, this study adopts the variable density method from the SIMP 

approach and proposes a multi-objective topology optimization based on compromise program-

ming. This study, through multi-objective topology optimization of the bracket, obtained an opti-

mized topology structure that maximizes static stiffness and the dynamic low-order natural fre-

quencies of the launch device bracket at launch angles of 0°, 53°, and 85°, with an azimuth angle of 

0°. Finally, the obtained topology structure was validated using finite element software. The design 

method presented in this paper not only enhanced the stiffness of the bracket structure for such 

launch devices and increased the first two natural frequencies of the bracket but also achieved 

weight reduction. The optimization design process also provides a reference for other mechanical 

structures. 
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1. Introduction 

The bracket is the main support structure of the launcher, bearing the recoil gener-

ated during the launch process, and serving as the foundation for the installation of other 

structural components and equipment of the launcher. The bracket, situated between the 

launch box and the gear seat ring, serves as the primary rotor of the launcher. Various 

electrical drive components, such as the height adjuster and the launch box, are mounted 

on the bracket and rotate with it, facilitating the launching process. To ensure the accuracy 

of the launcher, the rigidity and natural frequency of the bracket must be carefully con-

sidered. 

Topology optimization is the analysis of finite element models with established loads 

and boundary conditions, aiming to achieve optimal material distribution through speci-

fied constraints and objective functions, thereby obtaining optimized design solutions. 

Single-objective optimization remains the mainstream approach in topology optimization 

currently. With the further improvement of modern engineering's requirements for me-

chanical quality, optimization is no longer just about a single objective, and the demand 

for multi-objective optimization design is increasing. Under static conditions, the inherent 

frequencies under multiple operating conditions are important parameters of stiffness 

and dynamic conditions, and their multi-objective topology optimization is a common 

challenge in the engineering field. 

Su Changqing et al. employed the compromise programming method to maximize 

dynamic vibration frequencies and static stiffness under multiple loading conditions, 

when conducting topology optimization of aircraft engine mounts [1]. Pan Xixi et al. 
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adopted a weighted compromise programming method to propose a comprehensive ob-

jective function that includes natural frequency and compliance. This approach achieved 

an optimal balance of dynamic natural frequencies and static stiffness for the common 

base of a certain type of marine diesel-electric element, addressing the issue of natural 

frequencies being close to the excitation frequencies of the diesel engine [2]. Sun Xiaohui 

et al. eeighting method and compromise programming method, to establish five distinct 

objective functions. The results demonstrated that all five methods could address multi-

objective topology optimization problems. Among them, the linear weighting method 

contributed significantly to improving structural stiffness, while the compromise pro-

gramming method was more effective in enhancing the natural frequencies of the struc-

ture [3]. Li Wenhua et al. proposed a local convergence indicator (ILC) and designed an 

environmental selection strategy based on this indicator and improved population crowd-

ing. Based on this, they introduced a multi-modal multi-objective optimization algorithm 

for obtaining global and local optimal solution sets [4]. Cui Yupeng et al. proposed a 

method based on compromise programming and an improved game theory quadruple 

combination weighting method. Utilizing the IFCWGT strategy, which integrates the 

game theory idea of non-preferential coupled analytic hierarchy process, entropy 

weighting method, inter-layer correlation method, and coefficient of variation method, 

they enhanced the topology performance and layout of open decks [5]. Lan Fengchong et 

al. used compromise programming to define a comprehensive objective function for max-

imizing static stiffness and the first-order modal frequency of a steering knuckle under 

multiple loading conditions. This approach significantly improved the stiffness and first-

order modal frequency of the steering knuckle while reducing its weight [6]. Ge Shicheng 

applied the compromise programming method to define a multi-objective topology opti-

mization function for static stiffness and dynamic vibration frequency, resulting in a to-

pology structure that simultaneously meets the requirements for no-load stiffness, load 

compliance, and low-order vibration frequencies of flexible mechanisms [7]. Fan Wenjie 

et al.  employed the compromise programming method for multi-objective topology op-

timization of a vehicle frame structure, effectively enhancing the stiffness and natural fre-

quencies of the frame and improving its overall performance [8]. Xiang Weicheng et al., 

in order to obtain a naval gun bracket with maximum stiffness and dynamic frequency 

under multiple firing angles, used the compromise method to normalize and dimension-

less multiple objectives, resulting in a validated bracket optimization model [9]. Zhou Yu, 

et al. utilized a normalized decision-making algorithm to obtain the optimal compromise 

solution from the Pareto set of multiple objectives [10]. Zaifang Zhang, et al. obtained the 

optimal hydraulic loading structure of tank bottom by using multi-objective particle 

swarm optimization algorithm [11]. Haris Moazam Sheikh et al. proposed the MixMOBO 

method, which can identify multiple effective Pareto solutions, addressing the issue that 

traditional Bayesian methods cannot handle multi-objective variables [12]. Junyuan 

Zhang, et al. proposed a topology optimization method for castings, establishing con-

straint equations for casting formation based on the vector method. The component base-

line is proposed to realize automatic filtering. This method optimizes the structure with-

out cavities, enhancing its manufacturability [13]. 

2. Simp Method 

Structural topology optimization can be regarded as determining the necessity of the 

presence of a material in a certain element within the unfrozen region, where the materi-

al's elastic modulus function varies with the relative density of the elements in the density-

based method. It aims to determine the sensitivity of the structural stiffness to the relative 

density of each element, retaining sensitive elements while removing insensitive ones. 

However, solving discrete problems computationally is not convenient. Therefore, they 

are usually transformed into continuous problems for research. The density-based 

method is based on this research idea, and after verification of its feasibility, it has been 
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widely applied in practice. The density-based method utilizes a continuously varying 

density function as the independent variable, and employs a given mapping function to 

derive the relationship between the macroscopic elastic modulus of the material and the 

relative density of the element. It assumes isotropic material properties and does not in-

volve microstructural or additional homogenization processes. Utilizing the computa-

tional power of computers enables the optimization process to be both scientific and effi-

cient [14-16].  

The SIMP method is an extension of the aforementioned density-based method. 

Based on the aforementioned, the SIMP method accelerates the convergence of material 

elements towards either "existence" or "non-existence" by introducing a penalty factor 

during optimization iterations [17]. Assuming that the relative density of the element after 

iteration and the elastic modulus of the material remain isotropic, while the value of Pois-

son's ratio remains unchanged, the mathematical equation for constructing the material 

interpolation model using the SIMP method defines as: 
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In formula 1: ( )iE x  is the relative elastic modulus in the iterative process, i  is the 

optimized element number, E0 is the true elastic modulus of the material, and ( )iE x  has 

a value between 0 and E0: when ( )0iE =0 , ( ) 01iE E= . x  is the relative density of the ele-

ment, and p is the introduced penalty factor. The value rule of the penalty factor p of the 

entity element is as: 
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In formula 2: 0 is the Poisson ratio of the material. 

The optimization model constructed by SIMP method is written as: 
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In formula 3: x  is the design variable, n  is the number of design variables, ( )C x  is 

the target to be optimized, F  is the load vector on the node, U  is the displacement vec-

tor of each node, and K  is the stiffness matrix of the structure.   is the non-frozen area, 
a  is the percentage of the optimized structure volume V  in the non-frozen area   in 

the original bracket volume, vi
 is the volume of the element. 

The deficiencies of the SIMP method are as follows: although utilizing penalization 

factors effectively drives the relative density of the elements towards 0 or 1, thereby re-

ducing the number of elements with intermediate densities, the optimized checkerboard 

phenomenon and the instability of pseudo-density values still persist. Moreover, the out-

comes of topology optimization based on the iterative structure topology of the SIMP 

method are not solely dependent on the penalization factor (p), but also on the mesh di-

vision of the finite element model. This limitation can be mitigated by integrating optimi-

zation constraints such as minimum (maximum) member size constraints, independent 

point density interpolation methods, density slope methods, and perimeter constraints 

with the SIMP method. 

3. Multi-Objective Function for Topology Optimization of Bracket Structure 

3.1. Objective Function of Static multi-condition Stiffness Topology Optimization 
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The multi-stiffness topology optimization refers to the optimization scenario where 

stiffness is the optimization objective under multiple loading conditions, which is a type 

of multi-objective topology optimization problem. Methods such as linear weighting, 

square weighting, normative objective, shortest distance, and compromise programming 

can all be employed to solve multi-objective problems. Under different operating condi-

tions, the stiffness of the bracket structure is linearly weighted since it represents the same 

characteristic. Therefore, normalization is unnecessary, allowing the resolution of multi-

load cases to be transformed into solving single-load case problems directly. In the past, 

the linear weighting method was commonly employed to solve multi-stiffness optimiza-

tion problems. In improving the comprehensive stiffness under multiple operating condi-

tions, the impact is significant. However, if the linear weighting method is simply em-

ployed, for non-convex optimization problems, where there are multiple objectives with 

different elements or there exists a coupled relationship with negative correlation between 

multiple objectives, the optimal solution for multiple objectives cannot be simultaneously 

achieved. Due to the difference in dimensionalities and magnitudes between the inherent 

frequency and structural stiffness, a generalized approach similar to normalization is con-

sidered for their joint solution. According to the requirements stated above, compromise 

programming applies normalization to the scale of the optimization objectives and 

demonstrates a favorable effect on improving the inherent frequencies of structures. 

Therefore, this paper addresses the comprehensive optimization problem of multi-stiff-

ness trusses and dynamic frequencies using the method of compromise programming. 

In the process of structural optimization, when addressing the problem of achieving 

maximum stiffness in structures under multiple loading conditions, the common objective 

is to attain the minimum compliance of the structure under these conditions. According 

to the principle of minimum potential energy, the maximum stiffness of the structure can 

be obtained by solving for the minimum strain energy. Therefore, the topology optimiza-

tion of structures under multiple loading conditions, with the objective function being the 

minimum strain energy, is expressed using the compromise programming method as: 
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In formula 4: m represents the total number of load conditions; kw  represents the 

weight of the k-th sub-loading condition; q  represents the penalty factor, 2q  ; ( )kC x  

represents the expression of the objective function of strain energy under the k-th sub-

loading condition. max

kC  and min

kC respectively represent the maximum and minimum 

values of the strain energy objective function under the k-th sub-loading condition. 

3.2. Objective Function of Dynamic Natural Frequency Topology Optimization 

In conventional modal frequency topology optimization methods, the volume frac-

tion or mass fraction of the structure is typically constrained within a certain range, and 

the natural frequencies close to the working frequency of the structure are optimized to 

move them further apart. However, when using this method to increase the natural fre-

quencies of certain orders, the modes of non-optimized orders may decrease due to 

changes in the structure, leading to the phenomenon of mode swapping among natural 

frequencies. To prevent this situation, this paper represents the optimization objective 

function by using the weighted average frequency of the natural frequencies of the orders 

to be optimized: 
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Specifically, the symbol ( )x  in the formula is the average frequency, 
i  repre-

sents the characteristic frequency of order i , 
0  and s  are known or given parameters, 

iw  is the weight coefficient of the frequency of order i , and f  represents the order of 

the natural frequency to be optimized. 

The advantage of defining the average frequency is that it takes into account the nat-

ural frequencies to be optimized within the formula. Even if the natural frequencies of the 

structure swap, the continuity of the average frequency formula remains relatively 

smooth due to the lack of abrupt changes in the structure during the optimization process. 

3.3. Determination of Weights for Sub-objectives 

The concept of satisfaction is introduced within the context of optimization problems 

to evaluate the degree of satisfaction with the optimization results throughout the iterative 

process. Satisfaction is denoted by the symbol 𝑞. When the optimization results are fully 

satisfactory, 𝑞 is assigned a value of 1. Conversely, when the optimization results are com-

pletely unsatisfactory, 𝑞 is assigned a value of 0. For levels of satisfaction that fall between 

fully satisfactory and completely unsatisfactory, 𝑞 takes on values within the range of 0 to 

1. Figure 1 illustrates the satisfaction curve for the k-th sub-loading condition. 

 

Figure 1. Three-Bend Satisfaction Curve and S-Shaped Satisfaction Curve 

In the figure: the horizontal axis represents the iterative optimization results of the 

objective, and the vertical axis represents the satisfaction with the optimization results of 

the objective. min

kC  represents the best optimization result for the k-th sub-loading condi-

tion. max

kC  represents the worst optimization result for the k-th sub-loading condition. 

The expression for the S-Shaped satisfaction curve is: 
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In formula 6: as ( )kC x  approaches min

kC , kq  approaches 1; as ( )kC x  approaches 
max

kC , kq  approaches 0. 

The introduction of the satisfaction function avoids the need for manually selecting 

the weights for each sub-loading condition, allowing for dynamic iteration of the weights 

assigned to the objectives of each sub-loading condition. The expression for the weight 

coefficient of the k-th sub-loading condition is: 
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In formula 7: 
kq  represents the satisfaction with the objective value ( )kC x  of the 𝑘-

th sub-loading condition, while 1 kq−  represents the dissatisfaction with the objective 
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value ( )kC x  of the k-th sub-loading condition. The lower the satisfaction with ( )kC x , 

i.e., the greater the dissatisfaction with ( )kC x , the larger the value of 
kw  becomes, 

thereby increasing its influence on the overall objective and accelerating the achievement 

of a satisfactory value for ( )kC x . By dynamically adjusting 
kw , each sub-objective is reg-

ulated to yield a satisfactory result. 

3.4. Implementation of Compromise Optimization for Bracket Structures Based on 

Multi-Objective Optimization 

The above sections have separately considered the multi-stiffness and low-order nat-

ural frequencies of the structure. Now, by integrating the compromise programming of 

the average natural frequency and multi-stiffness into a single formula and performing a 

weighted summation of these two different categories of objectives, we derive a compre-

hensive expression for the objective function that simultaneously optimizes both the 

multi-stiffness and the frequencies. 
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Where, ( )F x  represents the comprehensive objective function expression; w  rep-

resents the weight of the weighted strain energy objective function under multiple loading 

conditions. 
kw  represents the weight of the k-th sub-loading condition; ( )kC x  repre-

sents the flexibility of the k-th sub-loading condition; max

kC  and min

kC  represent the max-

imum strain energy and minimum strain energy of the structure under the k-th sub-load-

ing condition respectively. max  and 
min  are the maximum and minimum values of 

the frequency objective function respectively. ( )x  is the average frequency. 

In this paper, the proposed compromise programming formula and the integrated 

formula of average frequency are defined within the custom functions provided by finite 

element software. These are set as function responses, with the volume response given as 

a constraint condition. Finally, the custom function response is used as the objective for 

topology optimization. 

4. Establishment of Multi-Objective Structure Optimization Model of Bracket 

4.1. Simulation Conditions 

To reduce the difficulty of mesh generation in the preprocessing stage, features that 

have a minimal impact on the analysis, such as chamfers and round holes, were removed 

while retaining essential structural features. The simulation conditions defined in this pa-

per are shown in Table 1. Two extreme launch angles and one common launch angle were 

selected for analysis, with other launch angles temporarily disregarded. 

Table 1. Simulation conditions 

load cases specification 

CASE1 The emission Angle is 0° and the directional emission Angle is 0° 

CASE2 The emission Angle is 53° and the directional emission Angle is 0° 

CASE3 The emission Angle is 85° and the directional emission Angle is 0° 

4.2. Dynamic Simulation 

Using Adams software, dynamic modeling simulations of the launching device un-

der three conditions were conducted, yielding the maximum instantaneous recoil force 
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between the launch box and the bracket trunnion for each condition. The maximum in-

stantaneous recoil force of 200 KN obtained from the analysis is used as the load that the 

optimized bracket structure must withstand. The specific models are shown in Figure 2. 

Figure 2. Schematic diagram of three emission angles 

4.3. Establishment of Launcher Bracket Optimization model 

In the multi-stiffness topology optimization of the launch device bracket, two ex-

treme sub-loading conditions and one common sub-loading condition were considered, 

as detailed in Table 1. The element mesh length was set to 15 mm, and the maximum 

loads on the bracket under the three sub-loading conditions were applied to the trunnion 

area via coupling points. The outer edge of the lower plane of the bracket disk was fixed 

in place. The material for the bracket is selected as ordinary welded steel plate, with a 

density of 7.8*10⁻⁹ t/mm³, an elastic modulus of 2.1*10⁵ MPa, and a Poisson's ratio of 0.3. 

The structure of the model is shown in Figure 3. The gray areas represent the frozen re-

gions, which cannot be optimized. The green areas indicate the non-frozen regions, which 

are available for optimization design. 

 

Figure 3. Optimization model of bracket. 

5. Optimized Design of Launcher Bracket Structure 

5.1 The Structural Compliance Optimization of the Launch Device Bracket under Multi-

ple Loading Conditions 

In the static compliance topology optimization of the launch device bracket, three 

different sub-loading conditions were considered. The structural strain energy weights 

 

CASE1 

 

CASE2 

 

CASE3 
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under these conditions were continuously adjusted by the satisfaction function during the 

optimization process, meaning that if the strain energy objective for a particular condition 

was unsatisfactory, its weight in the overall objective would be increased. Using the multi-

stiffness topology optimization model constructed above, the topology optimization re-

sults for equal-weight compliance under multiple loading conditions were obtained, from 

which max

kC  and min

kC  for the three conditions can be derived. The topology structure is 

shown in Figure 4: 

 

Figure 4. Multi-stiffness topology optimization results 

5.2. The First Two Natural Frequencies of the Launcher Bracket Structure are Optimized 

To achieve better optimization results, the optimization focuses on the first two nat-

ural frequencies. In this process, the weights of the first two natural frequencies are also 

set to the same value. Then, based on the average frequency formula constructed above, 

the average frequency of the first two orders is optimized to obtain max  and min  for 

the average frequency. Figure 5 shows the specific form of the topology structure opti-

mized for dynamic frequency. 

 

Figure 5. Optimization results of average frequency 

5.3. Comprehensive Topology Optimization of Launcher Bracket Structure 

Based on the topology optimization model of the bracket proposed above, along with 

the multi-stiffness and average frequency formulas, the topology optimization of strain 
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energy under three sub-loading conditions was first performed, obtaining the optimal so-

lutions for strain energy under the three conditions and the corresponding strain energy 

values max

kC  and min

kC . Next, frequency optimization calculations were conducted, re-

sulting in the optimal solution for the average frequency ( )x  and the corresponding 

max  and 
min  values. Finally, considering both stiffness and frequency in a multi-objec-

tive scenario, an adaptive weight adjustment method was employed, and the optimal to-

pology structure as shown in Figure 6 was obtained. 

 

Figure 6. Comprehensive topology optimization results 

5.4 Structural Design of Launcher Bracket 

By analyzing Figure 5, it can be observed that the topology-optimized model still 

exhibits residual material and uneven surfaces. To achieve a bracket structure that meets 

the actual machining conditions and application requirements, and to ensure a more co-

herent bracket model, the topology results were smoothed and re-modeled. This process 

yielded a clearer bracket structure that satisfies both the multi-condition static stiffness 

requirements and the dynamic natural frequency requirements. The details are shown in 

Figure 7. 

 

Figure 7. Bracket structure reconstructed based on topology optimization results 

6. Results and Analysis 

6.1. Multi-objective Topology Optimization Results 
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The iterative process of the first two natural frequency objectives for the optimized 

topology structure is shown in Figure 8. The iterative process of the strain energy objective 

is shown in Figure 9. As can be seen from Figures 8 and 9, the first two natural frequencies 

have increased, and the strain energy in all three sub-loading conditions has decreased. 

 

Figure 8. Frequency iteration curve 

 

Figure 9. Iteration curves of strain energy under three ing conditions 

6.2. Verification of finite element analysis 

Static finite element analysis was performed, and the stress distribution is shown in 

Figure 10. 
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Stress distribution at 0° emission Angle of the original model 

 

Stress distribution at 0° emission Angle of the new model 

 

Stress distribution at 53° emission Angle of the original model 

 

Stress distribution at 53° emission Angle of the new model 

 

Stress distribution at 85° emission Angle of the original model 

 

Stress distribution at 85° emission Angle of the new model 

Figure 10. The stress distribution of the model before and after optimization under three ing con-

ditions 
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The comparisons of strain energy and frequency before and after optimization are 

shown in Table 2 and Table 3, respectively. The comparisons of stress and mass of the 

structure before and after optimization are shown in Table 4 and Table 5, respectively. 

Table 2. Comparison of strain energy of the structure before and after optimization 

load cases 
Pre-optimization strain 

energy 
Optimized strain energy 

Comparison before and 

after optimization 

CASE1 20476 12103 Down 40.9% 

CASE2 12000 7944 Down 33.8% 

CASE3 12127 7656 Down 36.9% 

Table 3. Frequency comparison of structures before and after optimization 

 
Pre-optimization fre-

quency 
Optimized frequency 

Comparison before and 

after optimization 

Mode1 36.1 36.3 Up 0.5% 

Mode2 36.6 37.2 Up 1.6% 

Table 4. Comparison of maximum stress before and after optimization 

load cases 
Maximum stress before 

optimization 

Maximum stress after op-

timization 

Comparison before and 

after optimization 

CASE1 77.8 64.9 Down 16.6% 

CASE2 87.4 76.4 Down 12.6% 

CASE3 50.9 46.8 Down 8.1% 

Table 5. Comparison of structure mass before and after optimization 

 
Pre-optimization 

quality 
Optimized quality 

Comparison before and after 

optimization 

Mass 4125kg 2395kg Down 41.9% 

By comparing the data in the four tables above, it can be clearly observed that the 

compliance of the optimized bracket is reduced by 36.9% to 40.9%; the first two natural 

frequencies are increased by 0.5% to 1.6%; the maximum stress is decreased by 8.1% to 

16.6%; and the structural mass is reduced by 41.9%. These results demonstrate that the 

improved bracket achieves greater stiffness, higher natural frequencies, and weight re-

duction. 

7. Conclusion 

To address the problem of maximizing stiffness and natural frequency as well as 

achieving weight reduction for a launch device bracket under multiple loading conditions, 

a compromise multi-objective topology optimization method with penalty factors and sat-

isfaction-adjusted sub-loading condition weights was employed. This approach success-

fully obtained a comprehensive objective function that simultaneously maximizes stiff-

ness and natural frequency. Consequently, the bracket structure was redesigned based on 

the optimized topology model. 

Static analysis revealed that the stiffness of the newly designed bracket structure in-

creased by nearly 60%, the first two natural frequencies increased by 0.5% to 1.6%, the 

mass was reduced by 41.9%, and the maximum stress decreased by 8.1% to 16.6%. This 

demonstrates that the compromise programming method is effective for multi-objective 
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topology optimization design of such launch device brackets. Additionally, this method 

can be referenced for the optimization design of other components of the launch device. 
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