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Abstract: With the increasing development of information technology and the rise of big data, the 

Internet has entered the era of information overload. While users enjoy the convenience brought by 

big data to their daily lives, they also face more and more information filtering and selection prob-

lems. In this context, recommendation systems have emerged, and existing recommendation sys-

tems cannot effectively deal with the problem of data sparsity. Therefore, this paper proposes a 

graph convolutional network based on matrix factorization for recommendation. The embedding 

layer uses matrix factorization instead of neighborhood aggregation, and the interaction layer uses 

multi-layer neural networks instead of simple inner products. Finally, on the Movielens-1M, Yelp 

and Gowalla public data set, NDCG and Recall are better than the existing baseline model, which 

effectively alleviates the data sparsity problem. 

Keywords: Recommendation Systems; Graph Convolutional Network; Deep Learning; Matrix Fac-
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1. Introduction 

Artificial intelligence enables computers to perform various tasks and solve prob-

lems by simulating human intelligence. The development of artificial intelligence technol-

ogy provides strong algorithm support and data processing capabilities for recommenda-

tion systems[1]. Recommendation systems are research directions formed by integrating 

multiple disciplines such as data mining, machine learning, and deep learning. It models 

and analyzes existing data to predict new users or items. Its purpose is to mine user po-

tential information and establish appropriate matching relationships between users and 

items. Its mathematical expression is the items set I, the users set U, and the function F 

represents the accuracy of recommending i to u, as shown in (1). 

∀u ∈ U, r = argmax(s(u, i), i ∈ I (1) 

At present, recommendation systems are widely used in the field of e-commerce, on 

the one hand, the recommendation systems use the interaction information between users 

and items for modeling[2], to recommend the content that the user needs to see the most, 

effectively solving the problem of excessive information in the Internet leading to user 

loss and difficulty in finding the target information, on the other hand, the recommenda-

tion systems can effectively achieve the goal of the e-commerce platform[3], and the per-

sonalized recommendation service for users can attract more users, increase user sticki-

ness, and improve user retention. It can be seen that the research on recommendation 

systems meets the needs of current Internet platforms and users. 

The current recommendation system is closely integrated with deep learning. Firstly, 

models based on deep learning have stronger expressive ability, and multi-layer neural 

How to cite this paper: Yang, J., 

Wang, Z., Chen, C. GCN-MF: A 

graph convolutional network based 

on matrix factorization for recom-

mendation. Innovation & Technol-

ogy Advances, 2024, 2(1), 14-26. 

https://doi.org/10.61187/ita.v2i1.30 

 

 

 

 

 

Copyright: ©  2024 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 

https://bergersci.com/index.php/jta/index


Innovation & Technology Advances, 2024, 2(1), 14-26. 15 
 

 

networks can mine more feature information. Secondly, deep learning has strong flexibil-

ity and can achieve the integration of models and applications. The single hidden layer 

neural network recommendation model combines the ideas of collaborative filtering and 

autoencoder[4]. In collaborative filtering, the self-encoding of user vectors and item vec-

tors is completed through co-occurrence matrix, and the user item scores are predicted 

based on the self-encoding results. The model has certain generalization and expressive-

ness, but the structure is too simple and the expression ability is insufficient. The Deep 

Crossing model proposed by Microsoft[5] embeds the original features and inputs them 

into the neural network layer, where the features are intersected and handed over to the 

model for completion. This can solve the problem of large-scale automatic feature combi-

nations, but the model can only cross the feature vectors of users and projects. The Prod-

uct-Based Neural Network (PNN)[6] proposed by Shanghai Tongji University can achieve 

inner product, outer product, and other operations between different feature domains, 

improving the problem of insufficient cross over of deep crossing features. However, the 

approximation operation of outer product affects the expression ability. The Wide & Deep 

model[7] released by Google is a mixture of single-layer Wide and multi-layer Deep, en-

hancing the model's memory and generalization ability. Although this model can quickly 

process and memorize historical behavioral information, manual operations in the Wide 

section increase overhead. With the rapid development of deep learning, recommenda-

tion algorithms based on deep neural networks (MLP), convolutional neural networks 

(GNN), and recurrent neural networks (RNN) have emerged endlessly [8]. The core of 

these deep learning models in the field of recommendation systems is to learn the hidden 

vectors of users and projects, and combine them with collaborative filtering to complete 

parameter training. Finally, the hidden vectors of users and projects are extracted, and the 

recommendation process is completed based on predicted scores. 

However, the data extracted from recommendation systems has an irregular spatial 

structure and a large scale, and traditional neural network methods still cannot efficiently 

process such data. Graph Neural Network (GNN) is a redefined and designed deep learn-

ing model for processing non-Euclidean spatial data[9], which can accurately capture the 

potential connections between such data, model efficiently, and provide users with more 

accurate and personalized recommendation services. The successful applications of Pin-

terest Sample and Aggregate (PinSAGE)[10] and Multi-task Multi-view Graph Represen-

tation Learning framework (M2GRL)[11] in industrial recommendation systems fully 

demonstrate the practicality of recommendation systems based on GCN. In recent work, 

some scholars have fused the recommendation of graph neural networks with other con-

cepts[12] or models[13] to further mine features between users and items and improve 

recommendation performance. This is an important research direction for improving 

graph neural networks. 

To sum up, GNN plays an important role in recommendation systems, including the 

following aspects: 1) Modeling complex relationships: Recommendation systems face a 

complex network of relationships between users and items. GNN can effectively model 

these complex relationships, capturing implicit associations between users and items by 

learning the representations of nodes and edges. This enables the recommendation system 

to have a more comprehensive and accurate understanding of users' interests and simi-

larities between items. 2) Dealing with cold start issues: In recommendation systems, cold 

start issues for new users and items are a challenge. GNN can alleviate the cold start prob-

lem by utilizing existing user-item relationship networks to learn embedded representa-

tions of nodes and edges. By embedding new entities into existing graph structures, graph 

neural networks can provide preliminary recommendations for new entities based on 

similarity and association. 3) Remote relationship modeling: The relationship between us-

ers and items in a recommendation system is not limited to direct interaction, but also 

includes implicit and indirect association relationships. Graph neural networks can model 
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remote relationships, identify hidden associations and interests, and provide more com-

prehensive and accurate recommendations through multi-hop information dissemination 

and aggregation. 

The remainder of this paper is organized as follows. Section 2 introduces the related 

work including matrix factorization and graph convolutional networks. Section 3 specifies 

the model designed in this paper. Section 4 presents the experimental process and results. 

Section 5 is the conclusion, providing an overview of the work. 

2. Related Work 

2.1. Matrix Factorization 

Matrix Factorization[14] is the multiplication of a matrix into several matrices, which 

can describe the hidden features of the original matrix. Singular value decomposition is a 

commonly used matrix factorization method, such as (2) matrix M is decomposed into 

three matrices. 

M = 𝑈𝑑𝑖𝑎𝑔(𝜕)𝑉𝑇 ≈ 𝑈𝑘𝑑𝑖𝑎𝑔(𝜕)𝐾𝑉𝐾
𝑇 (2) 

Where 𝑈and 𝑉𝑇are the unitary matrices, representing left and right singular vectors. 

𝑑𝑖𝑎𝑔(𝜕) is a diagonal matrix, and the elements on the diagonal are singular values. Sin-

gular values are generally arranged in descending order. 

Since values with larger (smaller) singular values have a larger (smaller) representa-

tion of matrix features, K maximum singular values and singular vectors can be used to 

approximate the original matrix M. 

Matrix factorization has the characteristics of interpretability and dimensionality re-

duction, so it can be combined with machine learning and deep learning models and ap-

plied in various fields[15,16]. In computer vision, image classification uses matrix factori-

zation to extract image features, which can more accurately identify different objects in 

the image. Matrix factorization in image processing can realize image compression and 

storage, and improve processing efficiency. 

In natural language processing, the matrix factorization in text processing can de-

compose a large amount of text data into text features and user features, thus realizing 

text classification, clustering, visualization and emotional analysis. In addition, the matrix 

factorization can also learn the relationship between words and words, and then mine 

new words. In a recommendation system, the PMF model based on matrix factoriza-

tion[17] decomposes the user-item rating matrix into two low-dimensional matrices, op-

timizes the objective function, and finally predicts the missing values in the original rating 

matrix to generate a recommendation list. Overall, in the era of big data, using matrix 

factorization to discover hidden patterns and features in data has become a crucial data 

processing method. 

2.2. Graph Convolutional Networks 

In Graph Convolutional Networks (GCN), the interaction data is represented as a 

bipartite graph, that is, users (items) can interact with items (users), but users (items) do 

not interact with each other. As shown in Figure 1. 
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Figure 1. Bipartite Graph and Interaction Matrix 
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The bipartite graph is composed of three users and three items, one user can interact 

with multiple items, and one item can interact with multiple users. Interaction infor-

mation can be stored in the interaction matrix of 3 times 2. 

Suppose there are user set U of m users and item set I, interaction matrix, and adja-

cency matrix A of n items defined as (3). 

A = [
0 𝑅

𝑅𝑇 0
] (3) 

Multi-layer graph convolution network[18] based on hierarchical propagation rules 

is a classic neighborhood information aggregation neural network model, which is used 

to solve the problem of graph node classification. Its definition is as follows (4). 

𝐻(𝑙+1) = (�̃�−
1
2�̃��̃�−

1
2𝐻(𝑙)𝑊(𝑙)) (4) 

Where A is the adjacency matrix, D is the degree matrix of A, 𝐻(𝑙)is the input of the 

L-layer of the graph neural network, �̃�−
1

2�̃��̃�−
1

2 is normalization processing, 𝐻(𝑙+1)is the 

output of the L-layer, 𝑊(𝑙) is the trainable parameter matrix of the L-layer, and  is the 

activation function. 

Neural Graph Collaborative Filtering (NGCF)[19] follows the idea of standard graph 

convolutional network and collaborative filtering, integrates the bipartite graph of user 

and item into the embedding, solves the problem of lack of coding in the embedding of 

collaboration signals, and effectively expresses the higher-order connectivity between us-

ers and items. In the initial step, each user and item are associated with an ID embedding, 

𝑒𝑢
(0)

 is the initial embedding of user u, and 𝑒𝑖
(0)

 is the initial embedding of item i. Then 

NGCF uses the interaction of user and item to express the embedding as (5). 

Where 𝑒𝑖
(𝑘)

 and 𝑒𝑢
(𝑘)

 are the embeddings of user u and item i after propagation 

through k-layer, LeakyReLU is the activation function,𝑁𝑢 is the item set where user u 

interacts with item i,𝑁𝑖 is the user set where item i interacts with user u, 𝑊1 and 𝑊2 are 

trainable parameter matrices to achieve feature transformation, 
1

√|𝑁𝑢||𝑁𝑖|
 is normalization 

processing. 

𝑒𝑢
(𝑘+1)

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊1𝑒𝑢
(𝑘)

+ ∑
1

√|𝑁𝑢||𝑁𝑖|
(𝑊1𝑒𝑖

(𝑘)
+ 𝑊2(𝑒𝑖

(𝑘)
⊙ 𝑒𝑢

(𝑘)
))

𝑖∈𝑁𝑢

) 

(5) 
𝑒𝑖

(𝑘+1)
= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊1𝑒𝑖

(𝑘)
+ ∑

1

√|𝑁𝑢||𝑁𝑖|
(𝑊1𝑒𝑢

(𝑘)
+ 𝑊2(𝑒𝑢

(𝑘)
⊙ 𝑒𝑖

(𝑘)
))

𝑢∈𝑁𝑖

) 

After k-layer propagation, user u and item i each obtain k+1 embeddings. The em-

beddings are concatenated to obtain the final user and item embedding. Finally, the inner 

product is used to predict user preference scores for the item. 

Although GCN has made some achievements in the field of graph learning, the pro-

posals of Refined Graph Convolution Collaborative Filtering (RGCF)[20] and Linear Re-

sidual Graph Convolutional Collaborative Filtering (LR-GCCF)[21] indicate that appro-

priate simplification of GCN can improve the performance of recommendation tasks. He 

et al proved through a large number of ablation experiments that the nonlinear activation 

function and feature transformation matrix of NGCF are redundant operations for collab-

orative filtering and proposed a recommendation model named Light Graph Convolu-

tional network (LightGCN)[22] that only retains neighborhood aggregation, aiming to re-

duce the complexity of the model while improving the speed of model training. The em-

bedding updates for each user and item are shown in (6). 

𝑒𝑢
(𝑘+1)

∑
1

√|𝑁𝑢||𝑁𝑖|
𝑒𝑖

(𝑘)

𝑖∈𝑁𝑢

 (6) 
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Each layer of embedding is only related to the embedding of the neighborhood, sim-

plifying the model while improving computational efficiency. Compared with NGCF, 

LightGCN ignores the self-connection of nodes, deletes the activation function and feature 

transformation matrix, and uses average pooling to obtain the same effect of self-connec-

tion, further simplifying the operation process. In the LightGCN model, only the embed-

ding of layer 0 is trained, and multiple layers of embedding are continuously obtained 

through the formula (6). Finally, the initial and output of each layer are combined to ob-

tain the final embedding as shown in (7). 

𝐸𝑓𝑛 = (∑
(𝐷−

1
2𝐴𝐷−

1
2)𝑙

𝐿 + 1

𝐿

𝑙=0

) 𝐸 (7) 

2.3. Summary 

In recommendation systems, matrix decomposition can extract hidden features from 

a large amount of user project interaction data, capture the correlation between users and 

items, and achieve more accurate recommendations. In graph convolutional networks, 

LightGCN is a simplified graph convolutional network model based on the NGCF. After 

experimental verification, LightGCN is superior to the NGCF model in many cases. How-

ever, LightGCN still has some drawbacks such as the complexity and waste of time in 

graph convolutional neighborhood aggregation operations in recommendation tasks, and 

the simple inner product method restricts user and item interaction. To solve these prob-

lems, this paper integrates matrix factorization into a graph convolutional network and 

proposes an effective collaborative filtering model. 

3. Model 

To solve the problems in the LightGCN model, the Graph Convolutional Network 

model based on Matrix Factorization (GCN-MF) proposed in this paper is shown in Fig-

ure 2. 

The model in the Fig. consists of four parts: input layer, embedding layer, interaction 

layer, and output layer. Firstly, input the interaction data from users and items. The em-

bedding layer uses matrix factorization to decompose the interaction data into three ma-

trices M, V, and N. These matrices only take the K largest singular vectors or singular 

values. M, V, and parameter matrices form the user embedding, while N, V, and parame-

ter matrices form the project embedding. The interaction layer uses multi-layer neural 

networks to learn the interaction between user embedding and item embedding and fi-

nally outputs the prediction results. 
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n
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Figure 2. GCN-MF3.1. Input Layer and Embedding Layer. 
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The input layer inputs user item interaction data. Based on matrix factorization, for-

mula (7) representing LightGCN can be split into two terms to obtain formula (8). 

𝐸𝑈
𝑓𝑛

𝑀 𝑑𝑖𝑎𝑔 (
∑ 𝜕𝑘

𝑙
𝑙={0,2,4… }

𝐿 + 1
)  𝑀𝑇𝐸𝑈 = 𝑀 𝑑𝑖𝑎𝑔 (

∑ 𝜕𝑘
𝑙

𝑙={1,3,5… }

𝐿 + 1
)  𝑁𝑇𝐸𝐼 

(8) 

𝐸𝐼
𝑓𝑛

𝑁 𝑑𝑖𝑎𝑔 (
∑ 𝜕𝑘

𝑙
𝑙={0,2,4… }

𝐿 + 1
)  𝑁𝑇𝐸𝐼 + 𝑁 𝑑𝑖𝑎𝑔 (

∑ 𝜕𝑘
𝑙

𝑙={1,3,5… }

𝐿 + 1
)  𝑀𝑇𝐸𝑈 

Where 𝐸𝑈  and 𝐸𝐼  represent the embeddings of users and items,𝐸𝑈
𝑓𝑖𝑎𝑛𝑙  and 𝐸𝐼

𝑓𝑖𝑎𝑛𝑙  

represent the final embeddings, 𝑀, 𝑁represent the singular vectors of �̃�, and 𝜕𝑘
𝑙  repre-

sent the singular values of �̃�. 

According to (8), the final embedding representation is only determined by the sin-

gular vector and singular value, rather than neighborhood aggregation. Therefore, in (8), 

this paper retains M, N, and diagonal matrices, and replaces 𝑀𝑇𝐸𝑈 and  𝑁𝑇𝐸𝐼  with the 

learnable weight matrix W to obtain the formula, as shown in (9). 

𝐸𝑈
𝑓𝑛

= 𝑀 𝑑𝑖𝑎𝑔 (
∑ 𝜕𝑘

𝑙𝐿
𝑙=0

𝐿 + 1
) 𝑊1 

(9) 

𝐸𝐼
𝑓𝑛

= 𝑁 𝑑𝑖𝑎𝑔 (
∑ 𝜕𝑘

𝑙𝐿
𝑙=0

𝐿 + 1
) 𝑊2 

Firstly, a weighted singular matrix is obtained by assigning singular value weights 

to the singular vector, and then the embedding of the singular vector is learned through 

the feature transformation matrix W, the weight of singular vectors can be adjusted 

through L. 

In recent years, low rank representations[23] have played an increasingly important 

role in deep learning. The goal of formula (9) is to learn low rank representations. As the 

number of convolutional layers L increases, graph neural networks pay more attention to 

larger singular values to learn low rank representations and ignore smaller singular val-

ues. When L → ∞, the weight of the maximum singular value vector approaches 1 while 

the weight of other singular value vectors approaches 0. Therefore, excessive model layers 

can lead to the loss of some important information and the problem of over-smoothing[24]. 

The noise present in most small singular values and singular vectors can have a negative 

impact on the model, increasing computational complexity while reducing recommenda-

tion efficiency. Therefore, according to the idea of approximate substitution in matrix fac-

torization, larger singular values and singular vectors are more important in representing 

matrix features. Only the first K largest singular values and singular vectors can approxi-

mate the original matrix. 

LightGCN uses a simple polynomial to represent the weight function. This paper 

uses f(𝜕𝑘)  to represent the weight function to obtain the GCN-MF embedding layer 

model. The weight function can be set to different functions, for example, set f(𝜕𝑘) to 
1

1−𝛾𝜕𝑘
 [25]. Finally, the formula is shown in (10).  

𝐸𝑈
𝑓𝑛

= �̃�(𝐾) 𝑑𝑖𝑎𝑔(f(𝜕𝑘)) 𝑊1 
(10) 

𝐸𝐼
𝑓𝑛

= 𝑁(𝐾) 𝑑𝑖𝑎𝑔(f(𝜕𝑘)) 𝑊2 

Where 𝛾 is a parameter used to adjust the importance of singular values, �̃�(𝐾) and 

𝑁(𝐾) are composed of the largest K left and right singular vectors by �̃�, and �̃� is the nor-

malized representation of the interaction matrix R. 

Unlike traditional graph convolutional networks that update the embeddings of all 

users and items multiple times in the form of parameter matrices, the GCN-MF embed-

ding layer uses K maximum singular values and singular vectors instead of neighborhood 

aggregation to learn the embeddings of users and items, reducing model parameters and 

complexity, and having stronger scalability. 
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3.2. Interaction Layer and Output Layer 

After the embedding layer, the vector representation of users and items is obtained, 

and then input into the interaction layer. The interaction layer and output layer use Neural 

Collaborative Filtering (NCF)[26], and the simple inner product form of the original model 

is replaced by the Multi-Layer Perceptron (MLP). The reason is that multi-layer neural 

network is a structure that can approach any continuous function through training and 

parameter adjustment[27], which can solve the limitation of simple inner product, to bet-

ter capture the complex interaction between users and items, and improve the accuracy 

of model prediction. The formula of the interaction layer is (11). 

∝= 𝑎𝑙(ℎ𝑙
𝑇(𝑎𝑙−1(… 𝑎2 (ℎ2

𝑇 [
𝐸𝑈

𝑓𝑛

𝐸𝐼
𝑓𝑛

] + 𝑏2) … )) + 𝑏𝑙) (11) 

Where ℎ𝑙
𝑇  represents the parameter matrix of each layer, and 𝑏𝑙 is the bias of each 

layer, and 𝑎𝑙 represents the activation function of each layer of the neural network, and 

∝ is the output of the interaction layer. 

The output layer only has one neuron connected to ∝, and the final prediction result 

is the scoring matrix. The Formula is (12). 

�̂�𝑢𝑖 = 𝑎(ℎ𝑇 ∝) (12) 

Where ℎ𝑇  is the weight of the output layer and 𝑎 is the activation function of the 

output layer. 

The simple inner product of MF is a special form of NCF. Set the number of neural 

network layers of the interaction layer in the NCF to 0, set the parameter matrix of the 

output layer to identity matrix, and select the identity function as the activation function 

to become the inner product form of MF. When selecting a multi-layer neural network 

and nonlinear activation function, compared with the simple inner product form of MF, 

GCN-MF's interaction layer and output layer have a more powerful expression ability to 

learn the interaction between users and items. 

4. Experiments 

4.1. Experimental Environment 

Experimental environment setup: The programming language is Python, the lan-

guage version is Python 3.8.10, and the operating system used is window10. The code is 

developed by the deep learning framework Python 1.13.1. The server used in the labora-

tory is NVIDIA RTX6000 GPU with 48GB of memory. 

4.2. Data Set and Evaluation Indicators 

The data set is from Movielens-1M, Yelp and Gowalla. Including user, item and in-

teraction information. The information of the data set is shown in Table 1. 

Table 1. Data set.  

 Movielens-1M Yelp Gowalla 

User 6040 31,668 29,858 

Item 3952 38,048 40,981 

Interaction 1,000,209 1,561,406 1,027,370 

Sparsity 95.81% 99.87% 99.916% 

Movielens-1M contains 1,000,209 interactions between 6040 users and 3952 items, 

with a sparsity of 95.81%. Yelp contains 1,561,406 interactions between 31,668 users and 

38,048 items, with a sparsity of 99.87%. Gowalla contains 1,027,370 interactions between 

29,858 users and 10,981 items, with a sparsity of 99.916%. In this experiment, 80% of the 
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data was randomly selected as the training set, and the remaining 20% was used as the 

testing set. 

The most commonly used evaluation indicator in recommendation systems are Re-

call@k and NDCG@k[28]. 

The Recall is the ratio of the predicted number of positive samples to the total number 

of positive samples. A higher Recall indicates a more accurate model prediction, as shown 

in (13). 

Recall =
TP

TP + FN
 (13) 

Where TP represents the predicted number of positive samples and FN represents 

the number of positive samples that were not predicted. 

The NDCG is an indicator that measures the quality of sorting results. Firstly, the 

scores of each position in the sorting results are normalized, and then the cumulative 

scores of each position are calculated in order of position. Finally, the results are obtained 

by dividing the cumulative scores by the theoretical scores. The higher the NDCG, the 

more accurate the model prediction is, as shown in (14). 

NDCG =
∑

2𝑟𝑒𝑙𝑖 − 1
𝑙𝑜𝑔2(𝑖 + 1)

𝑝
𝑖=1

∑
2𝑟𝑒𝑙𝑖 − 1

𝑙𝑜𝑔2(𝑖 + 1)
|𝑅𝐸𝐿|
𝑖=1

 (14) 

Where |𝑅𝐸𝐿| represents a set composed of the first P results, arranged in descending 

order of correlation, 𝑟𝑒𝑙𝑖 represents the correlation degree at position i. 

4.3. Comparing Algorithms and Parameter Settings 

The comparative algorithms used in this experiment include Bayesian Personalized 

Ranking optimization for Matrix Factorization (BPR-MF), NGCF, LightGCN, and Ultra 

Graph Convolutional network (UltraGCN). The application fields and advantages of the 

four methods are as follows. 

BPR-MF[29], Bayesian Personalized Ranking (BPR) is a general personalized sorting 

optimization method. BPR-MF directly trains users to embed projects and then recom-

mends them according to the collaborative filtering framework. The goal is to get the cor-

rect sorting of items by users. 

NGCF[19], a neural network model that uses multi-layer graph convolution to learn 

user and project embedding, updates user and item embeddings through neighborhood 

aggregation, feature transformation and nonlinear activation of graph convolution net-

work, and then recommends according to collaborative filtering framework. 

LightGCN[22], a neural network model that uses multi-layer graph convolution to 

learn user and item embeddings, is a simplified version of NGCF. It deletes feature trans-

formation and nonlinear activation, only retains neighborhood aggregation to update user 

and item embeddings, and then recommends according to the collaborative filtering 

framework. 

UltraGCN[30], an ultra-simplified graph convolution network model, is improved 

from the single-layer LightGCN. It approximates the result of multi-layer graph convolu-

tion through constraint loss, skips the multi-layer message delivery mechanism, and then 

recommends it according to the collaborative filtering framework. 

Among them, BPR-MF is a classic recommendation model based on matrix factoriza-

tion, while the latter three are cutting-edge recommendation models based on graph con-

volutional networks. Therefore, this article chooses the above four methods for compari-

son. 

In this experiment, the Xavier method is used to initialize the embedding parameters. 

The basic parameters of the model are set as follows: the user (item) embedding size is 64, 
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the batch size is 1024, the L2 regularization coefficient is 1e-4, the decay rate is 0, the num-

ber of the epoch is 1000, the number of network layers of NGCF and LightGCN is 3, and 

the other parameters are consistent with the parameters provided in the original papers. 

4.4. Experimental Results. 

The methods of graph neural network models are superior to BPR-MF, indicating the 

effectiveness of graph neural network models. It is feasible to alleviate the problem of data 

sparsity by enhancing information exchange through high-order connectivity. 

NGCF has the lowest performance among all methods of graph network models, as 

it is the model designed for recommendation in graph convolutional networks. Initially, 

graph convolution networks were designed for graph classification tasks, with preserved 

feature transformations and nonlinear activation, making the model redundant, increas-

ing training difficulty, and reducing recommendation performance. LightGCN, on the 

other hand, removes feature transformations and nonlinear activations from NGCF, 

learns user and item embeddings through linear propagation on user item interaction 

graphs. This simple model is easier to train and implement than NGCF. However, the 

truly complex operation in graph convolution networks is neighborhood aggregation, 

where multiple updates of user and item embeddings have a significant impact on recom-

mendation results. Table 2 shows the results of comparative experiments. 

Table 2. Overall Performance Comparison. 

 Movielens-1M Yelp Gowalla 

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 

MF-BPR 0.2017 0.1989 0.0553 0.0468 0.1563 0.1384 

NGCF 0.2486 0.2343 0.0564 0.0475 0.1577 0.1391 

LightGCN 0.2527 0.2454 0.0628 0.0547 0.1619 0.1424 

UltraGCN 0.2739 0.2675 0.0672 0.0586 0.1654 0.1460 

GCN-MF 0.2833 0.2772 0.0687 0.0598 0.1678 0.1482 

Improve 3.43% 3.62% 2.23% 2.04% 1.45% 1.51% 

UltraGCN performs best among all baseline models because it uses weighted MF in-

stead of neighborhood aggregation operations and allows for more appropriate edge 

weight allocation, and flexible adjustment of relative importance between different types 

of relationships, thereby improving LightGCN's multi-layer messaging mechanism, 

demonstrating faster convergence speed and lower complexity. Compared to LightGCN, 

the model is easier to implement and more efficient, However, UltraGCN is only com-

posed of single-layer graph convolution networks, so it can only utilize single-order 

neighborhood information and ignore the high-order information interaction of graph 

convolution networks, which will limit recommendation performance in cases of limited 

interaction. 

GCN-MF outperformed all baseline models on three common datasets. Compared to 

UltraGCN, GCN-MF on Movielens-1M Recall@20 and NDCG@20 increased by 3.43% and 

3.62%, on Yelp Recall@20 and NDCG@20 increased by 2.23% and 2.04%, on Gowalla Re-

call@20 and NDCG@20 increased by 1.45% and 1.51% respectively. The lower the sparsity 

on the data set, the higher the improvement on NDCG@20 and Recall@20. To some extent, 

it alleviates the problem of data sparsity.  

GCN-MF uses matrix factorization to replace the neighborhood aggregation of graph 

convolutional networks with K largest singular vectors and singular values in the embed-

ding layer and uses a multi-layer neural network instead of simple inner product opera-

tion in the interaction layer to further capture the interaction information between users 

and items, thus improving the multi-level message transmission mechanism of LightGCN. 



Innovation & Technology Advances, 2024, 2(1), 14-26. 23 
 

 

The experimental results show that GCN-MF in this paper is an efficient and feasible col-

laborative filtering framework model. 

Table 3 shows the model training time, including the time of each epoch, the number 

of epoch and the training time on movielens-1M. 

Table 3. Training time comparison on movielens-1M. 

Methods Time/Epoch Epoch Training time 

MF-BPR 1.32s 25 33s 

LightGCN 5.31s 400 1816s 

UltraGCN 1.63s 85 138.55s 

GCN-MF 1.83s 95 173.85s 

The training time of LightGCN is 1816s, because lightGCN is a traditional GCN 

model. And the convergence speed of UltraGCN and GCN-MF aggregated in the im-

provement field is faster, 138.55s and 173.85s respectively. The training speed is increased 

by more than 10 times. From the training time, it is further verified that the simplification 

of graph convolution networks can indeed improve the recommendation efficiency of col-

laborative filtering tasks. 

4.5. Parameter Analysis 

Figure 3 shows the impact of parameter K on the results of movielens-1M, which is 

related to the number of singular values and singular vectors. 

 

Figure 3. Impact of K. 

The analysis interval of K is [15, 75]. When K is taken as 15, a small number of singu-

lar values and singular vectors cannot effectively represent matrix features. As K increases, 

the NDCG and Recall of the GCN-MF model show an upward trend. When K is taken as 

45, the model achieves good results. If the value of K continues to increase, it will lead to 

a downward trend in the evaluation index. The reason is that if smaller singular values 

and singular vectors participate in the operation, it will not only increase the computa-

tional complexity of the model. Moreover, the noise of these smaller singular values and 

singular vectors will have an impact on the indicators, indicating that only taking the first 

45 maximum singular values and singular vectors can improve the recommendation re-

sults of the model. 
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Figure 4. Impact of γ.  

Figure 4 shows the impact of parameter γ on the results of movielens-1M, which is 

related to singular value to singular vector weight. 

The analysis interval of γ is [0.5, 3]. Starting from 0.5, as the value increases, the 

NDCG and Recall of the GCN-MF model show an upward trend. When the value is 2, the 

model achieves good results. If the value continues to increase, it will lead to a downward 

trend in the evaluation indicators. This indicates that when the value is 2, the recom-

mended results of the model can be improved. 

Figure 5 shows the impact of parameter L on the results of movielens-1M, which is 

related to the number of neural network layers. 

 

Figure 5. Impact of L.  

The analysis interval of L is [1, 4]. When L is taken as 1, it cannot effectively represent 

the interaction between users and projects. As the number of layers increases, the NDCG 

and Recall of the GCN-MF model show an upward trend, indicating that adding multi-

layer neural networks to learn the interaction between users and items can improve the 

prediction results. When L is taken as 3, the model achieves good results. If the number 

of layers continues to increase, the evaluation indicators will show a downward trend. 

The reason is that the overly complex model will not only increase the training cost, but 
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also cause the problem of over-fitting. This indicates that when the number of interaction 

layers L is 3, the recommendation effect can be significantly improved. 

5. Conclusion 

This paper proposes a graph convolutional network recommendation model that 

combines matrix factorization and graph network into the collaborative filtering frame-

work and improves the efficiency of recommendation. Experiments were conducted on 

the real data set, using Recall and NDCG as evaluation indicators for the model. The pro-

posed model was compared with baseline models such as MF-BPR, NGCF, LightGCN, 

UltraGCN. The experimental results showed that the proposed model outperformed the 

baseline models and provided users with more accurate recommendation results. 

In future work, firstly, the model proposed in this paper can be combined with other 

models to achieve more efficient recommendations. Secondly, this model only uses user 

and item interaction bipartite graphs to mine higher-order information of users and items. 

It can be considered to incorporate different auxiliary information, such as comment text, 

user interests, etc. into the model to further improve recommendation results.  

In addition to the recommendation field, artificial intelligence technology is also be-

ing applied in medical diagnosis, traffic control, and agricultural intelligence. With the 

innovation of algorithms and the improvement of computing power, the application field 

of artificial intelligence will further expand and deepen. 
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