
Innovation & Technology Advances, 2023, 1(2), 1-24

https://bergersci.com/index.php/ita/index

DOI: 10.61187/ita.v1i2.36

A review of neural network lightweighting techniques

Ziyi Gong, Huifu Zhang*, Hao Yang, Fangjun Liu, Fan Luo

Department of Computer Sciences and Engineering, Hunan University of Science and Technology, Xiangtan,

Hunan, China

804250678@qq.com (Gong, Z.), yanghaohnust@163.com (Yang, H.), 1989036826@qq.com (Liu, F.),

22010501023@mail.hnust.edu.cn (Luo, F.)

*Correspondence: hfzhang@hnust.edu.cn

Abstract: The application of portable devices based on deep learning has become increasingly wide-

spread, which has made the deployment of complex neural networks on embedded devices a hot

research topic. Neural network lightweighting is one of the key technologies for applying neural

networks to embedded devices. This paper elaborates and analyzes neural network lightweighting

techniques from two aspects: model pruning and network structure design. For model pruning, a

comparison of methods from different periods is conducted, highlighting their advantages and lim-

itations. Regarding network structure design, the principles of four classical lightweight network

designs are described from a mathematical perspective, and the latest optimization methods for

these networks are reviewed. Finally, potential research directions for lightweight neural network

pruning and structure design optimization are discussed.

Keywords: lightweighting techniques for neural networks; model pruning; network structure de-

sign; convolutional structure optimization

1. Introduction

Deep learning differs significantly from traditional manual feature design. Convolu-

tional neural networks (CNNs) employed in deep learning can automatically extract deep

features of targets without the need for manual feature extraction. This characteristic

greatly reduces the difficulty of applying image recognition [1-3]. Consequently, deep

CNNs have become increasingly mature and successful in various fields such as military,

transportation, and healthcare. However, in order to achieve higher accuracy, the depth

of neural networks continues to increase, resulting in higher computational complexity

and storage requirements. As performance demands escalate, efficiency becomes a pri-

mary concern in network design. Specifically, efficiency issues primarily involve model

storage and prediction speed. Therefore, lightweighting techniques are needed to address

efficiency concerns while maintaining accuracy [4-7].

The goal of model lightweighting is to address the inability of traditional neural net-

works to run on small-scale hardware in terms of storage space and energy consumption.

To achieve this goal, optimization techniques such as network structure design and model

compression are primarily employed to reduce storage requirements, improve execution

speed, and maintain the accuracy of traditional neural networks [8-10]. In recent years,

the research direction of lightweight neural networks has been continuously expanding,

requiring ongoing exploration, comparison, and updates. It is worth noting that excellent

lightweight network models often possess multifunctionality, and the optimization

trends have become diverse, no longer limited to a single model compression algorithm

or the replacement of lightweight modules. Therefore, a comprehensive summary of op-

timization methods for lightweight neural network architectures is necessary [11-13].

This paper provides a comprehensive review of classical compression algorithms

and network structures for neural networks. Firstly, it elaborates on model pruning algo-

How to cite this paper: Gong, Z.,

Zhang, H., Yang, H., et al. A Review

of Neural Network Lightweighting

Techniques. Innovation & Technol-

ogy Advances, 2023, 1(2), 1–24.

https://doi.org/10.61187/ita.v1i2.36

Copyright: © 2023 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(http://creativecommons.org/licenses

/by/4.0/).

https://bergersci.com/index.php/ita/index

Innovation & Technology Advances, 2023, 1(2), 1-24. 2

rithms and analyzes and summarizes recent research advancements based on these algo-

rithms. Model pruning encompasses structured pruning and unstructured pruning, with

structured pruning covering techniques such as convolutional kernel pruning and chan-

nel pruning [14]. Next, it analyzes some classical lightweight neural networks from the

perspectives of lightweight module design and convolutional structure optimization, and

summarizes the latest research achievements based on these network structures. Finally,

it discusses the prospects and challenges of lightweight neural networks and provides a

comprehensive conclusion [15-17].

The paper is organized as follows: Section II introduces two pruning algorithms for

model pruning and analyzes their advantages and disadvantages. Section III presents the

ideas and methods of network structure design, summarizing four lightweight network

structures that have been applied and improved in recent years. It also analyzes the char-

acteristics and performance of these network structures. Section IV discusses the future

development trends and challenges of lightweight neural networks. Section V provides a

comprehensive summary of the work conducted in this paper.

2. Model pruning

Model pruning is one of the most commonly used methods in compressing neural

network models. Its primary objective is to reduce computational complexity and model

size by removing unimportant neurons in the neural network. Model pruning algorithms

can be categorized into two types: unstructured pruning and structured pruning. The clas-

sification of model pruning methods [18] is illustrated in Figure 1. The distinction lies in

whether the entire node or convolutional kernel is removed all at once.

Figure 1. Classification methods for model pruning.

In unstructured pruning algorithms, each element of every convolutional kernel is

considered, and the parameter information with zero values in the kernels is removed.

This pruning method takes into account each parameter in the network model, allowing

for more fine-grained pruning. In contrast, structured pruning algorithms employ a

coarse-grained pruning approach by directly removing the structured information of en-

tire convolutional kernels. This can effectively reduce the size of the model and improve

its performance. Specifically, kernel pruning refers to the removal of a group of convolu-

tional kernels in a convolutional layer, while channel pruning refers to the removal of

entire channels in a convolutional layer. This subdivision provides a clearer description

of the different ways in which structured pruning can be performed.

2.1. Unstructured pruning

Unstructured pruning does not adhere to specific geometric shapes or constraints

when removing the parameter information with zero values in the convolutional kernels.

Figure 2 illustrates the process of unstructured pruning, demonstrating the fine-grained

pruning approach.

Innovation & Technology Advances, 2023, 1(2), 1-24. 3

Figure 2. Fine-grained pruning process.

This paper investigates the representative works and recent advances in unstruc-

tured pruning algorithms. The earliest pruning algorithm can be traced back to the Opti-

mal Brain Damage (OBD) algorithm proposed in reference [19], which belongs to the cat-

egory of single-weight pruning algorithms within unstructured pruning. The OBD algo-

rithm utilizes the Hessian matrix based on the loss function to calculate parameter weights

and prunes the parameters with lower weights. However, the OBD algorithm simplifies

the calculation of the Hessian matrix by ignoring the off-diagonal terms, which is a hypo-

thetical simplification. Subsequently, reference [20] studied the off-diagonal terms of the

Hessian matrix and discovered that the assumption made by the OBD algorithm is invalid

in many cases. To overcome the limitations of the OBD algorithm, reference [19] proposed

the Optimal Brain Surgeon (OBS) method, which utilizes all second-order derivative in-

formation of the error function for network pruning without the need for retraining. Both

the OBD and OBS algorithms share a similar drawback, which is the high computational

complexity involved in computing and updating the significance of all parameters in each

iteration. To address this issue, reference [21] proposed a method that uses the minimum

contribution variance as the pruning criterion. If a parameter's output remains almost the

same before and after bias, its contribution is considered insignificant, these parameters,

which have the smallest contribution variances on the training set, can be removed.

Figure 3. The three main steps of the pruning process.

Innovation & Technology Advances, 2023, 1(2), 1-24. 4

In addition, reference [22] proposed a method that directly constructs a weight sali-

ency matrix and performs sorting to select insignificant redundant nodes for pruning.

Furthermore, in reference [23], a method based on learning weight connectivity im-

portance for pruning was introduced. This method consists of three steps, as shown in

Figure 3. Through an iterative process of connection pruning and weight training, it can

reduce the storage and computational requirements by an order of magnitude while

maintaining accuracy.

2.2 Structured pruning

In contrast to unstructured pruning algorithms, structured pruning algorithms target

entire structures (such as convolutional kernels or channels) rather than individual pa-

rameters. By removing entire structures at once without the need to individually compute

parameters, structured pruning algorithms have significantly lower complexity compared

to unstructured pruning algorithms. Therefore, structured pruning algorithms have be-

come an important direction in pruning algorithm research. This paper categorizes struc-

tured pruning into two types: convolutional kernel pruning and channel pruning, and

discusses them [34-36].

2.2.1 Convolution kernel pruning

Convolutional kernel pruning is a coarse-grained pruning method characterized by

the simultaneous pruning of connected input channels in the subsequent layer when

pruning a specific convolutional kernel in a convolutional layer. This method effectively

reduces the number of parameters in the model by removing convolutional kernels with

lower importance. Figure 4 illustrates the process of convolutional kernel pruning.

Figure 4. Illustration of the convolutional kernel pruning process.

In reference [37], an algorithm based on global search and convolutional kernel sali-

ency is proposed. In reference [37], an algorithm based on global search and convolutional

kernel saliency is proposed. The algorithm utilizes the Taylor expansion criterion to ex-

pand the objective function and identifies the convolutional kernel that causes the least

change in the objective function as the salient kernel. It then replaces the salient kernel

Innovation & Technology Advances, 2023, 1(2), 1-24. 5

with zero values. Reference [38] improves upon the aforementioned algorithm by intro-

ducing consistent extension capabilities to any layer in the network, eliminating the need

for sensitivity analysis on each layer. Reference [39] introduces the ThiNet pruning algo-

rithm, which establishes a one-to-one relationship between the current layer's convolu-

tional kernels and the next layer's input channels through convolutional computations.

This relationship is utilized to explore the saliency of the input channels for the next layer's

convolutional kernels. In reference [40], a novel pruning method for convolutional kernels

is proposed, known as Filter Pruning via Geometric Median (FPGM). The central idea of

the geometric median, as described in reference [41], is as follows: Given a set of points

with a quantity of
() ()()1

 , ,
n

n a a , for each point ()i da  , find a point * dx  such that

the sum of their Euclidean distances is minimized. This is shown in Equation (1). This

pruning method is able to satisfy both the requirements of a larger paradigm deviation

for the filter and a smaller minimum criterion for the filter. And its usefulness and ad-

vantages are verified on two image classification benchmarks. Reference [42] introduces

an approximate Oracle convolutional kernel pruning algorithm. This algorithm prunes

the kernels by randomly masking them and calculates the cumulative change in the out-

put of the next layer to search for the least significant kernels. Furthermore, reference [43]

proposes an end-to-end joint pruning method that can simultaneously prune convolu-

tional kernels and other structures. By employing generative adversarial learning tech-

niques, this method effectively addresses the optimization problem. Reference [44] pre-

sents a dynamic pruning algorithm. This algorithm dynamically predicts the saliency of

the next layer's convolutional channels during the training process and skips channels

with lower saliency. This dynamic nature allows different input images to flexibly skip

different channels based on their characteristics. Moreover, reference [45] introduces the

meta-convolutional kernel pruning algorithm, which considers the relationships between

convolutional kernels and constructs a meta-pruning framework to adaptively select ap-

propriate pruning methods when the distribution of kernels changes. Reference [46] pro-

poses a meta-learning pruning algorithm. This algorithm first trains a pruning network

using random structure sampling and utilizes meta-learning to predict the accuracy of the

pruned network. It can search for pruned networks under different constraints without

requiring manual intervention and does not require fine-tuning during the search process.

 () ()
 

()*

2

1.

arg min ,
i d

i n

x f x where f x x a x


=  −  (1)

Reference [47] proposes a method called overall global pruning, which uses the idea

of pruning convolutional kernels to address the limitations of amplitude-based methods

when pruning fully connected layers. Furthermore, in reference [48], a novel method

named Collaborative Channel Pruning (CCPrune) is introduced. This method effectively

assesses the significance of channels by incorporating the weights of convolutional layers

and the scaling factors of Batch Normalization (BN) layers. Moreover, reference [49] in-

troduces a method known as Global Filter Importance-based Adaptive Pruning (GFI-AP).

This approach assigns importance scores to each convolutional kernel by evaluating how

effectively the network learns the mapping from input to output using the dataset. This

enables a comprehensive comparison among the kernels. Reference [50] proposes a

method for dynamically removing redundant convolutional kernels by embedding man-

ifold information of all instances into the pruned network space. By aligning the manifold

information between the recognition complexity and feature similarity of images in the

training set with the pruned subnetwork, it maximizes the utilization of redundancy

within the given network structure. Reference [51] introduces a novel method for pruning

convolutional kernels, utilizing feature map ranking (HRank) for exploration and devel-

oping a mathematical formula for kernel pruning.

Innovation & Technology Advances, 2023, 1(2), 1-24. 6

2.2.2 Channel pruning

Channel pruning is a method used to prune redundant channels in feature maps,

without considering the impact of convolutional kernel weights. It is particularly effective

in cases where there is a significant amount of redundancy in the feature maps. The pro-

cess of channel pruning is illustrated in Figure 5. By pruning redundant channels, model

compression can be achieved. One of the advantages of channel pruning is that it does not

rely on sparse convolutional computation libraries or specialized hardware, yet it can still

achieve high compression rates.

Figure 5. Illustration of the channel pruning process.

Reference [52] proposes a method based on eliminating low-activity channels, which

reduces the computational operations between each convolutional kernel and channels

that do not contribute significantly to the model's predictions. This method effectively

reduces the computational load without significantly impacting the model's performance.

Similarly, at the channel level, reference [53] introduces a channel pruning method based

on LASSO regularization and linear least squares. This method first identifies and re-

moves redundant convolutional kernels and their corresponding feature maps, reducing

the model's parameter count and computational complexity. Then, the remaining network

is reconstructed to restore the model's predictive ability. Building upon the work in refer-

ence [53], reference [54] argues for the necessity of jointly pruning neurons across the en-

tire neural network based on a unified objective. By considering the relationships between

different neurons and their contributions to the overall network performance during the

pruning process, a unified objective ensures that the pruned network maintains good pre-

dictive performance during the retraining phase. Reference [55] proposes a network slim-

ming method, which is a commonly used pruning algorithm for many large-scale net-

works. The core idea is to introduce a scaling factor


 for each channel and establish an

objective function as shown in Equation (2):

()

()() ()
,

 , ,
x y y

L l f x w y g


 


= +  (2)

Innovation & Technology Advances, 2023, 1(2), 1-24. 7

Equation (2) where x and y are the input and output of the feature map respectively,
w is the weight, ()g  is the penalty term,  is the scaling factor, and  is the balance

factor. The joint optimisation of the regular term of the scaling factor  and the weight

loss function automatically identifies and removes unimportant channels to improve the

computational speed of the network. The network thinning process is shown in Figure 6.

Figure 6. Illustration of the network slimming process.

Reference [56] presents a more general and effective improvement to the method pro-

posed in reference [55]. Instead of directly using the parameters of the Batch Normaliza-

tion (BN) layer, this approach introduces additional scale factors to enhance the method's

applicability. Reference [57] proposes a discriminative-aware channel pruning method for

pre-trained models. This method introduces an additional channel-aware loss function,

which is combined with the classification loss function, and incorporates reconstruction

error. It utilizes the 2.0L norm to iteratively induce sparsity in channel pruning and pa-

rameter optimization. Reference [58] challenges the effectiveness of norm-based calcula-

tions and proposes a norm-independent channel pruning technique. This method em-

ploys an end-to-end random training approach, enforcing the constant output of certain

channels and then adjusting the biases of the affected layers to eliminate these constant

channels, achieving channel pruning. Furthermore, in reference [59], an optimal thresh-

olding (OT) method is proposed. This method aims to prune channels with layer-corre-

lated thresholds, optimally separating important channels from negligible ones. By utiliz-

ing OT, most unimportant channels are pruned to achieve high sparsity while minimizing

performance degradation. In reference [60], researchers attempt to determine the channel

configuration for pruning models through random search. Experimental results demon-

strate the effectiveness of this simple strategy compared to other channel pruning meth-

ods. Existing methods often treat the pruning rate as a hyperparameter and overlook the

sensitivity of different convolutional layers. Reference [61] introduces a sensitivity-based

channel pruning method, measuring it using second-order sensitivity. The underlying

concept involves the selective pruning of insensitive filters while preserving the sensitive

ones. This is achieved by quantifying the sensitivity of a convolutional kernel through the

summation of sensitivities of its individual weights. Additionally, the method incorpo-

rates layer sensitivity by considering Hessian eigenvalues, thereby automating the pro-

cess of determining the optimal pruning rate for each layer.

2.3. Analysis and discussion

By analyzing pruning algorithms from different periods, including the latest ones,

we can observe significant advantages of unstructured pruning. The most notable ad-

vantage is its ability to directly zero out or trim a large number of parameters, resulting

in a highly sparse model that does not significantly affect model accuracy. Additionally,

Innovation & Technology Advances, 2023, 1(2), 1-24. 8

unstructured pruning can modify parameters based on the underlying logic of different

hardware, leading to improved acceleration. However, unstructured pruning also has no-

ticeable drawbacks. Firstly, due to its consideration of the impact of individual neurons

on the network, unstructured pruning algorithms can be computationally intensive. Sec-

ondly, simply applying unstructured pruning does not directly accelerate sparse matrix

computations, as the size of the pruned matrix remains unchanged. This means that sparse

matrix multiplication and other computations are still required, which may not yield sub-

stantial acceleration on certain hardware. Moreover, unstructured pruning algorithms

may rely on specific software or hardware implementations, limiting their flexibility and

portability across different deep-learning frameworks. In contrast, structured pruning al-

gorithms have advantages in these aspects. Structured pruning reduces computational

complexity, simplifies sparse matrix computations, and is easier to use across different

deep learning frameworks. Consequently, recent research has been inclined towards em-

ploying structured pruning algorithms for model pruning [62-67].

Structured pruning algorithms have advantages in terms of hardware acceleration

and prediction accuracy because they consider a more comprehensive set of factors. Com-

pared to unstructured pruning, structured pruning can achieve model compression and

acceleration by pruning entire convolutional kernels or channels. However, structured

pruning algorithms also have some limitations. Firstly, in convolutional kernel pruning

algorithms, the relationships between kernels are often overlooked. Kernels sometimes

work together in a coordinated manner to achieve accurate predictions. Pruning based

solely on the individual significance of each kernel may not lead to the optimal pruning

results. Secondly, for new models, one-time pruning with structured pruning algorithms

often struggles to maintain the same level of accuracy as the original model. Therefore,

algorithm-level optimizations are needed to achieve better accuracy preservation. Addi-

tionally, conventional structured pruning algorithms require manual configuration of

pruning thresholds and other hyperparameters, which limits the automation of the algo-

rithm. As a result, fully automated learning modes cannot be realized [68-71].

To sum up, structured pruning algorithms have significant advantages over unstruc-

tured pruning in terms of hardware acceleration and prediction accuracy. However, there

are still challenges to address. For example, it is crucial to consider the relationships be-

tween convolutional kernels and optimize the algorithms at the algorithmic level to

achieve better accuracy preservation. Additionally, the level of automation in the algo-

rithms needs to be further improved to facilitate a more convenient and efficient model

pruning process. These are important directions in current research to further enhance the

effectiveness of structured pruning algorithms.

3. Network Architecture Design

The design of lightweight network architectures aims to reduce model complexity

and decrease computational resource consumption by optimizing the network architec-

ture [72-74]. The goal of this design is to create more efficient network structures that

achieve model size compression, faster runtime, and reduced training difficulty. In the

network architecture design, this paper discusses how to achieve model lightweight

through two aspects: lightweight module design and convolutional structure optimiza-

tion.

3.1 Lightweight module design

The design of lightweight modules aims to reduce model complexity by creating

compact and efficient network modules. These modules often employ specific structures

and operations to minimize the number of parameters and computational requirements.

Additionally, lightweight module design adopts a modular approach, breaking down the

network into smaller modules and constructing the entire network by combining these

modules. This modular design enhances the flexibility and scalability of the network.

Innovation & Technology Advances, 2023, 1(2), 1-24. 9

3.1.1 Fire module

The structure of the Fire module consists of two sub-layers: the squeeze layer and the

expand layer. The squeeze layer utilizes a 1 1 convolutional kernel, while the expand

layer employs both 1 1 and 3 3 convolutional kernels. Figure 7 illustrates the struc-

ture of the Fire module.

Figure 7. Fire module schematic

To reduce the number of network parameters, the Fire module utilizes the design of

the squeeze and expand layers. In the expand layer, a 1 1 convolutional kernel is used

instead of a 3 3 convolutional kernel to decrease the number of 3 3 convolutional

kernels. Simultaneously, the squeeze layer employs a 1 1 convolutional kernel to limit

the output channel count. This design strategy was applied in the classic SqueezeNet [75],

where the Fire module serves as its core module. Compared to AlexNet [76], the

SqueezeNet network constructed by stacking Fire modules reduces the number of param-

eters by 50 times while maintaining comparable accuracy. In addition to SqueezeNet, a

novel neural network architecture called SqueezeNext is introduced in reference [77].

SqueezeNext combines the design principles of SqueezeNet and tensor decomposition. By

decomposing the convolutional operation into an additive step followed by separable con-

volutional operations, SqueezeNext achieves a 3.2 times faster speed than SqueezeNet

without sacrificing accuracy. Reference [78] presents an optimized SqueezeNet-based

squeeze network model (OSQN-DNN) for unmanned aerial vehicle (UAV) aerial image

classification. This model uses OSQN as the feature extractor and applies the Coyote Op-

timization Algorithm (COA) [79] to optimize the hyperparameter selection in the

SqueezeNet model, significantly improving the overall classification performance. Exper-

imental results demonstrate that the OSQN-DNN model achieves better accuracy and

runtime inference time compared to SqueezeNet on the benchmark UCM dataset.In ref-

erence [80], an enhanced version of the SqueezeNet convolutional neural network is in-

troduced. This improved model incorporates data preprocessing techniques such as data

normalization and the Synthetic Minority Over-sampling Technique (SMOTE). Further-

more, the continuous wavelet transform is utilized to generate spectrograms, which are

then employed for training and testing the modified SqueezeNet model. The results

demonstrate that this enhanced SqueezeNet model achieves a remarkable accuracy of 90%.

In reference [81], a novel approach combining the Aquila Sine Cosine Algorithm (ASCA)

with the SqueezeNet model is presented. This integration aims to reduce both the training

time and computational complexity of the detection process. By leveraging the ASCA

technique, the weights of Deep Convolutional Neural Networks (DCNN) and SqueezeNet

Innovation & Technology Advances, 2023, 1(2), 1-24. 10

are updated, resulting in improved efficiency. Experimental results demonstrate the su-

perior performance of this combined model.

3.1.2 Ghost module

This paper visualizes the process of neural networks extracting features from data,

as shown in Figure 8. During the feature extraction process, many features are similar.

These redundant feature maps increase the computational burden of the network, and

removing them would significantly degrade the model's recognition performance. To ad-

dress this issue, Ghost provides a method to generate a large number of similar feature

maps at a smaller computational cost. The core idea of the Ghost module is to generate

multiple feature maps by sharing convolutional kernels, thereby reducing the number of

parameters and computations. By leveraging inexpensive linear transformation opera-

tions (Cheap), the Ghost module can extract rich feature representations while maintain-

ing a smaller computational cost. This makes the Ghost module highly applicable in light-

weight network designs.

Figure 8. Neural network visualization feature map.

Let's analyze the principle behind Ghost in reducing computations from a theoretical

perspective, as shown in Figure 9. Assuming an input feature map has a channel count of

c we use m ordinary convolutional kernels size of k k to generate m intermediate feature

Innovation & Technology Advances, 2023, 1(2), 1-24. 11

maps. Each intermediate feature map is then transformed into s "ghost" feature maps

through a series of linear operations (Cheap), combined with the identity mapping of the

previous m intermediate feature maps, resulting in n output feature maps. In the Ghost

module, the number of identity mappings is
n

m
s

= , and the number of linear operations

is ()1m s − . Let's assume the kernel size for each linear operation is d d . Therefore, the

number of parameters for identity mappings in the Ghost module is m c k k   , and the

number of parameters for linear operations is ()1s m d d−    . The magnitude of d d

is similar to k k (k d). Typically, the channel count of the input feature map c is much

larger than the number of feature maps generated by linear operations s. On the other

hand, the number of parameters for generating n output feature maps using ordinary con-

volution is n c k k   .

Figure 9. Ghost Convolution Principle.

Next, we further analyze the memory and computational benefits brought by using

Ghost convolution through mathematical derivation, as shown in Equation (3). Through

theoretical analysis, replacing ordinary convolution with Ghost convolution can reduce

the number of convolutional parameters while obtaining the same number of feature

maps, effectively reducing the model parameter count by approximately s-fold.

() 1
1

c

n c k k s c
r s

n n s c
c k k s d d

s s

   
=  

+ −
   + −   

 (3)

GhostNet [82] is a lightweight neural network based on the MobileNetV3 [83] archi-

tecture. It replaces ordinary convolutions in MobileNetV3 with Ghost modules, forming

Ghost bottlenecks, and builds GhostNet upon this foundation. Experimental results have

demonstrated that compared to other lightweight neural network architectures such as

MobileNet series and ShuffleNet series, GhostNet achieves higher accuracy in ImageNet

classification tasks while having comparable parameter and computational counts. In ref-

erence [84], researchers applied GhostNet to the backbone network of YoloV4, resulting

in an improved network called Ghostnet-YoloV4. This enhanced network efficiently ex-

tracts features and significantly reduces the number of real-time counting operations.

Through field testing in nursery plots, this method not only effectively overcomes noise

interference in large field environments but also meets the computational requirements of

low-configured management system embedded mobile devices. The counting and meas-

urement accuracy both exceed 92%. To further enhance the performance of lightweight

image recognition models, reference [85] introduces L-GhostNet. This model integrates

Innovation & Technology Advances, 2023, 1(2), 1-24. 12

group convolution learning and an improved Channel Attention (CA) method into Ghost-

Net. Experimental results show that compared to GhostNet, L-GhostNet achieves slightly

higher accuracy across various datasets while reducing computational cost by over 44%

and parameter count by over 33%. It also provides a 26% increase in frames per second

(FPS). When compared to commonly used lightweight network models, such as Mo-

bileNets and ShuffleNets, operating at the same FLOP (Floating Point Operations) level,

L-GhostNet demonstrates superior performance. L-GhostNet achieves the lowest FLOPs,

highest accuracy, and fewer parameters, showcasing its exceptional overall performance.

Furthermore, reference [86] proposes a CBAM-GhostNet-SSD network, which introduces

Ghost modules and Efficient Channel Attention (ECA) mechanism to the SSD object de-

tection algorithm. By dynamically allocating parameters and changing the weights of de-

tection regions, this method improves the model's performance. To enhance the recogni-

tion accuracy of small objects, the CBAM module is also introduced. Compared to the

original SSD network, the CBAM-GhostNet-SSD network reduces parameter and compu-

tational counts by 98.23% and achieves a 14.5% increase in mAP.

3.2 Convolutional structure optimization

Convolutional structure optimization aims to reduce computational resource con-

sumption by optimizing the convolutional layers. Common optimization methods in-

clude the use of lightweight convolutional operations such as depthwise separable con-

volution and grouped convolution. These lightweight convolutional operations maintain

lower computational complexity while still preserving a certain level of prediction accu-

racy.

3.2.1 Group convolution

Grouped convolution first appeared in AlexNet and was designed to address limited

hardware resources. It allows for parallel computation on two GPUs, with their results

subsequently fused. Grouped convolution divides the input feature map into groups

based on channels and applies convolutional operations to each group individually. The

results of the grouped convolution are then concatenated along the channel dimension to

obtain the final output feature map. This operation has a lightweight effect, reducing com-

putational complexity.

Assuming that the input feature map is H W N  , the size of the convolution kernel

is K K , and M convolution kernels are used to perform the convolution operation, the

output is H W M  . The computational amount of the standard convolution is
K K M H W    . When the input feature channels are divided into G groups in the

grouped convolution, the calculation amount is
1

G
 of the standard convolution.

Therefore, grouped convolution reduces the computational burden by dividing the

input feature channels into multiple groups. This is particularly useful in scenarios with

limited hardware resources. However, it is important to note that grouped convolution

also introduces some information loss since there is no direct interaction between channels

within each group, resulting in inadequate fusion of information across feature maps [87-

89]. Therefore, when choosing the number of groups, a balance between computational

efficiency and model performance needs to be considered. ShuffleNetV1 [90] proposed a

channel shuffle method to address the limitation of information exchange between groups

in grouped convolution. In order to maintain the recognition accuracy, a uniform and

random shuffling is performed on the feature maps of grouped convolution, as shown in

Figure 10. The purpose of this channel shuffle operation is to ensure that the input infor-

mation for the next grouped convolution comes from different groups. ShuffleNet

achieved a 13-fold speed improvement compared to AlexNet while maintaining accuracy.

However, ShuffleNetV2 [91] pointed out that evaluating model performance solely based

on parameter count and floating-point operations (FLOPs) is inaccurate. Based on exper-

imental observations, the actual runtime of a model depends not only on computational

Innovation & Technology Advances, 2023, 1(2), 1-24. 13

operations but also on factors such as memory read/write, GPU parallelism, and file I/O.

Therefore, ShuffleNetV2 proposed four guidelines to improve model efficiency: (1) Use

convolutions with the same number of input and output channels. This minimizes

memory read/write and communication overhead. (2) Reduce the use of grouped convo-

lution. Although grouped convolution reduces computational burden, it also introduces

information isolation. Therefore, ShuffleNetV2 suggests minimizing the use of grouped

convolution to improve information exchange and overall performance. (3) Reduce net-

work branches. Branch operations in the network increase computational and communi-

cation overhead. (4) Minimize element-wise operations.

Figure 10. Channel shuffle.

ShuffleNetV2 is an improvement over ShuffleNetV1 based on the four guidelines

mentioned earlier. Its structure is shown in Figure 11. In the residual branch of Shuf-

fleNetV2, a 1 1 convolution with the same number of input and output channels is in-

troduced to meet the requirement of guideline (1). Simultaneously, the use of grouped

convolution is abandoned to comply with guideline (2). Finally, the feature addition op-

eration is replaced with the channel concatenation (Concat) operation, aligning with the

guideline (4). These improvements not only enhance the runtime speed but also improve

the accuracy. Experimental results show that ShuffleNetV2 achieves a 63% speed im-

provement compared to ShuffleNetV1.

Figure 11. Comparison of ShuffleNetV1 and V2 structures.

Innovation & Technology Advances, 2023, 1(2), 1-24. 14

In the latest research on ShuffleNet, a lightweight network called (2+1) D Distilled

ShuffleNet is proposed in [92] for human action recognition using an unsupervised distil-

lation learning paradigm. This network extracts knowledge from the teacher network

through distillation techniques without the need for labeled data. On the UCF86 and

HMDB4 datasets, (2+1) D Distilled ShuffleNet achieves better accuracy and inference

runtime than other state-of-the-art distilled networks. Furthermore, reference [93] pre-

sents a lightweight garbage classification model known as Garbage Classification Net-

work (GCNet), which builds upon ShuffleNetV2 with three notable enhancements: the

incorporation of the Parallel Mixed Attention Mechanism (PMAM), utilization of a novel

activation function, and the application of transfer learning. Experimental findings indi-

cate that GCNet achieves an outstanding average accuracy of 97.9% on a custom dataset,

showcasing a significant improvement of nearly 10% compared to ShuffleNetV2, while

maintaining a similar number of model parameters. Furthermore, in [94], a recognition of

individuals (RE) network called ShuffleNet-Triplet is proposed for individual cow recog-

nition. This network utilizes ShuffleNetV2 for feature extraction to reduce the number of

parameters and strengthen the network's ability to distinguish similar individuals by or-

ganically combining the triplet loss and cross-entropy loss. BNNeck is also introduced to

reduce conflicts between the two loss functions. Experimental results show that Shuf-

fleNet-Triplet achieves a 6.88% improvement in average accuracy compared to the Shuf-

fleNetV2 model.

3.2.2 Deep separable convolution

Deep separable convolution is a convolutional operation that consists of two steps:

depthwise convolution and pointwise convolution. This convolution operation effectively

reduces computational complexity and model parameters. In the depthwise convolution

step, each channel of the input features is convolved separately, as shown in Figure 12(a).

The purpose of this step is to capture features while preserving their spatial information.

Next, in the pointwise convolution step, the output of the depthwise convolution is con-

volved with a 1 1 convolutional kernel, as shown in Figure 12(b). The goal of pointwise

convolution is to fuse information from different channels by convolving the set of output

feature maps from the depthwise convolution with a 1 1 kernel. This process generates

the final output feature map.

(a)

(b)

Figure 12. Depth-separable convolution principle. (a) Depth-Wise convolution; (b) Point-Wise

convolution.

Innovation & Technology Advances, 2023, 1(2), 1-24. 15

Such a combination can make the model achieve the effect of lightweight, here we

assume an input feature map height and width of H and W , the number of channels is

M , the output feature map height and width are unchanged, the number of channels is
N . The number of standard convolution kernels is N , the size is K K M  . Then the

standard convolution computation is K K M N H W     . The computation of the

depth convolution in the depth-separable convolution is 1K K M H W     , and the

computation of the point-by-point convolution is 1 1 M N H W     . The ratio rC ob-

tained by comparing the total computation of the depth-separable convolution with that

of the standard convolution is shown in in Equation (4):

2

1 1 1 1 1
 r

K K M H W M N H W
C

K K M N H W N K

     +     
= = +

    
 (4)

This ratio Cr can be used to measure the extent of computational reduction achieved

by using deep separable convolution compared to standard convolution. Similarly, the

ratio of parameter count between deep separable convolution and standard convolution

is 2

1 1

N K
+ . In Equation (4), the size of the convolutional kernel is usually 3 3 , and the

computational complexity and parameter count of deep separable convolution are ap-

proximately
1

9
 to

1

8
 of standard convolution.

The MobileNet series is a collection of lightweight network models based on deep

separable convolution. These models aim to reduce computational complexity and pa-

rameter count while maintaining good performance, particularly in tasks such as image

classification. MobileNetV1 [95] was the first model in this series, which replaced tradi-

tional convolutional operations with deep separable convolution, resulting in a significant

reduction in computational complexity and parameter count. In the ImageNet classifica-

tion task, MobileNetV1 achieved comparable performance to traditional network models

such as GoogleNet and VGG-16 while reducing the model parameters by nearly 30 times.

MobileNetV2 [96] further improved upon MobileNetV1 by introducing linear bottleneck

structures and inverted residual blocks. The linear bottleneck structure combines depth-

wise convolution and pointwise convolution, enhancing both speed and accuracy. The

inverted residual structure improves information flow and feature propagation. Mo-

bileNetV3 incorporates neural architecture search (NAS) to automatically obtain optimal

network parameters and introduces the SE attention mechanism to enhance feature inter-

action between channels. This architecture demonstrated better performance than Mo-

bileNetV1 and MobileNetV2 in the ImageNet classification task. The latest research on the

MobileNet series includes Mobile-Former [97], which combines MobileNet with the

Transformer architecture to create a lightweight framework. By leveraging the advantages

of MobileNet in local processing and Transformer in global interaction through a bidirec-

tional bridge connection, this structure achieves bidirectional fusion of local and global

features. In the ImageNet classification task, it achieved a 3.3% improvement in accuracy

compared to MobileNetV1 while reducing computational complexity by 17%. A-Mo-

bileNet [98] introduces attention modules and parameter optimizations to the Mo-

bileNetV1 model, demonstrating better performance on FERPlus and RAF-DB datasets

compared to other models. Additionally, BM-Net [99] is a lightweight network composed

of a bilinear structure and MobileNet-V3, specifically designed for analyzing breast cancer

whole-slide images (WSI). Experimental results show its significant potential in breast

cancer WSI detection.

3.3 Analysis and discussion

From the performance comparison of various lightweight networks summarized be-

low (Table 1), it can be seen that GhostNet exhibits the best overall performance among

Innovation & Technology Advances, 2023, 1(2), 1-24. 16

these lightweight neural networks. It achieves the highest accuracy while maintaining rel-

atively low computational complexity. The SqueezeNet series has higher computational

complexity, poor scalability, and relatively lower recognition accuracy, but it has a smaller

parameter count. The ShuffleNet series has lower computational complexity and utilizes

channel shuffling operations to better leverage the information from each channel, thereby

improving network accuracy. The MobileNet series, although not as impressive as other

lightweight neural networks in experimental data, has widely applied the concept of deep

separable convolution in many large-scale networks that require lightweight designs [100-

102]. Each classic lightweight network model has its unique advantages, and there is cur-

rently no single network that can perfectly balance speed and accuracy. This provides us

with a direction for future research, which is to explore better lightweight network models

that achieve a better balance between speed and accuracy [103-105].

Table 1. Comparison table of four lightweight network model families.

Model FLOPs/M Params/M Accuracy/% DataSets

SqueezeNet[75] 837 1.20
Top-1:57.5

Top-5:80.3
ImageNet

SqueezeNext[77] 228 0.74
Top-1:58.58

Top-5:82.09
ImageNet

GhostNet[82] 141 5.2
Top-1:73.9

Top-5:91.4
ImageNet

ShuffleNetV1(g=3)[90] 140 2.4 Top-1:67.4 ImageNet

ShuffleNetV2[91] 142 - Top-1:69.4 ImageNet

MobileNetV1[95] 569 4.2 Top-1:70.6 ImageNet

MobileNetV2[96] 300 3.4 Top-1:72.0 ImageNet

MobileNetV3[83] 219 5.4 Top-1:73.8 ImageNet

Movements and performance of these four classic network models in recent years.

However, it can be observed that these papers mainly focus on applications in different

domains, with less emphasis on innovative network structure design or lightweight mod-

ule improvements. From the "Improvements" column in Table 2, it can be seen that some

papers attempt to improve accuracy by introducing different attention mechanisms. How-

ever, this often increases the complexity of the network model, making it challenging to

achieve lightweight goals. Other papers replace the backbone network of large models

with these four classic lightweight networks to achieve lightweight models, but this often

significantly reduces the recognition accuracy of the models.

However, only a few papers [106-121] have conducted further optimization research

based on lightweight network architectures. For example, in the MicroNet model pro-

posed in [121], the concept of microfactorized convolution is introduced. This method de-

composes the convolution matrix into low-rank matrices to integrate sparse connections

into the convolution, resulting in significant performance improvements at low FLOP

states, surpassing existing techniques. Therefore, to promote the development of light-

weight network computations, our research direction should focus more on innovative

network structures and improvements in lightweight modules. Such efforts will reduce

the complexity of models while maintaining good performance, and further drive the ad-

vancement of lightweight network computations.

Table 2. Improvement and performance of the latest lightweight networks.

Models Improvements Performance

Modified

SqueezeNet[122]

Improved SqueezeNet architecture by reducing

the number of Fire modules and increasing the

number of pooling layers

Improved precision by 28% and recall by 20%

compared to the original model SqueezeNet

Innovation & Technology Advances, 2023, 1(2), 1-24. 17

OSQN-DNN[78]

1) use the Coyote Optimization Algorithm (COA) to

optimize the hyperparameters involved in the

SqueezeNet model.

2) using DNN models as classifiers to assign ap-

propriate class labels.

Compared to the existing high caliber DLPSO al-

gorithm, the accuracy is 1% higher and the

runtime is reduced by 0.13s.

ASCA-SqueezeNet[81]
The weights of SqueezeNet are updated using

the Aquila Sine Cosine Algorithm (ASCA).

Compared with SqueezeNet, the test accuracy is

improved by 6.2% and the computation time is

reduced by 1s.

CBAM-GhostNet-

SSD[86]

1) Introduce the Ghost module into the SSD network

and add the ECA attention mechanism.

2) Add CBAM module to the network.

Compared to Ghost-SSD, mAP is up 1% and FPS

is up 3 frames/s.

GhostNet-YOLOv4[84]

1) replace the backbone network of YOLOv4 with

GhostNet.

2) replacing the normal convolutional blocks of

PANet in YOLOv4 with depth-separable convo-

lutional blocks.

Nearly 4% improvement in mAP for identifying

nursery saplings.

L-GhostNet[85]

1) Improved the Ghost module in GhostNet.

2) Introduced improved CA attention mechanism

(p-CA)

Compared to the original model GhostNet, it re-

duces the amount of computation by 44% and the

number of parameters by 33%, and improves the

FPS by 26%.

D Distilled Shuf-

fleNet[90]

1) distill learning using ShuffleNet as a student net-

work.

2) knowledge extraction from two teacher net-

works.

Compared to the ResNet-18 backbone, the accu-

racy is improved by 0.7% on the UCF01 dataset,

the amount of parameters is reduced by almost

30%, and the amount of computation is reduced

by almost 60%.

GCNet[93]

1) Added CBAM attention mechanism.

2) replaced the Relu activation function with FRelu.

3) Used transfer learning.

Compared with the original model ShuffleNetV2,

the accuracy is improved by 4.5%, and the num-

ber of parameters and computation are reduced

by nearly 8%.

ShuffleNet-Triplet[94]

The triple loss function and the cross-entropy

loss are calculated separately using the BNNeck

structure, and then the two are combined.

Nearly 3% improvement in recognition of indi-

vidual cows compared to the original model

ShuffleNetV2.

Mobile-Former[97]
Enabling two-way cross-talk combines Mo-

bileNet and Transform.

The accuracy is 1.3% higher than MobileNetV3

and the computation is reduced by 17.4%.

A-MobileNet[98]

1) Introduce CBAM attention mechanism in Mo-

bileNetV1.

2) Combine center loss and softmax loss to opti-

mize model parameters.

Accuracy is about 3% higher than MobileNetV1

on the RAF-DB dataset.

BM-Net[99]
Replaced MobileNetV3's classifier with a bilinear

structure.

On the BACH-challenged Part B WSI segmenta-

tion dataset, the average accuracy is improved by

1% compared to MobileNetV3.

4. Challenges and Prospects

Currently, intelligent mobile devices are moving in the direction of edge computing

and lightweight development. A key research focus at present is how to minimize model

latency and storage space while maintaining neural network model accuracy to the great-

est extent possible.

Most existing methods in model pruning algorithms eliminate redundant connec-

tions or neurons in the network. However, these low-level pruning methods pose non-

structural risks. Irregular memory access patterns during computer operations can also

impede further acceleration of the network [123-125]. In contrast, structurally pruned net-

Innovation & Technology Advances, 2023, 1(2), 1-24. 18

works have smaller model sizes, faster execution speeds, and reduced storage space re-

quirements, making them more suitable for deployment on computationally limited mo-

bile devices. Among them, convolutional kernel pruning is one of the hot research topics

in structured pruning. Most convolutional kernel pruning algorithms typically involve

three classic steps: pre-training, pruning, and fine-tuning. However, in [126], various al-

gorithmic evaluations were conducted on multiple network structures, revealing that

training small target models from random initialization can achieve identical or even bet-

ter model performance than classical three-step pruning algorithms. Additionally, train-

ing models from scratch can also achieve equivalent or better performance than fine-tun-

ing models. This indicates that in pruning algorithms, it is more important to find suitable

network structures rather than considering how to preserve important weights within ex-

isting structures. Furthermore, most current convolutional kernel pruning algorithms

only prune in a single dimension such as depth, width, or resolution, which may lead to

excessive loss in a particular dimension and reduce accuracy, while the compression rate

of the model may not be significantly high. Exploring pruning from multiple dimensions

could potentially yield better results, and this is an avenue worth investigating in the fu-

ture [127]. Therefore, future research should focus on designing appropriate network ar-

chitectures and exploring multidimensional pruning methods that prioritize achieving

high efficiency pruning algorithms while maintaining model accuracy. This will facilitate

the deployment of lightweight neural network models on computationally limited mobile

devices.

However, there are still some challenges in pruning algorithms. For example, the

evaluation systems and metrics used to assess the importance of weights and the perfor-

mance of pruning algorithms are often oversimplified. Therefore, it is crucial to propose

effective methods for measuring the impact of pruning on models, which remains a chal-

lenge in model pruning algorithms. Researching these challenges in pruning methods and

proposing algorithms with superior performance holds great potential for development.

Additionally, exploring algorithms that do not rely on manually designed hyperparame-

ters is a promising direction. Currently, research in this area is relatively limited but holds

significant importance for the advancement of pruning algorithms.

Significant progress has been made in network architecture design, primarily focus-

ing on designing lighter modules and optimizing convolutional structures. Currently,

there are two main approaches to designing lightweight models: (1) Improving existing

lightweight modules based on specific requirements. (2) Designing traditional modules

that meet the desired criteria and then replacing the convolutions in these modules with

lightweight convolutions, adjusting the structural relationships between modules using

existing lightweight functional structures or tools such as activation functions. Most light-

weight networks adopt the first approach, which has achieved noticeable results in terms

of model lightweighting. However, this approach has reached a plateau in terms of the

degree of model lightweighting, making it difficult to achieve further breakthroughs. In

contrast, the second approach is more challenging because it heavily relies on the design-

er's expertise and prior knowledge of deep learning. Designers need to possess a wealth

of prior knowledge, such as how to design structures that resemble sparsely connected

connections between human neurons in principle, and how to control the influence of

prior knowledge while improving performance metrics like latency, computation speed,

and storage space by altering the network structure.

Currently, reinforcement learning-based neural network architecture search is the

mainstream approach for network architecture design. This method uses a reinforcement

learning controller to search and generate network structures within the search space,

eliminating the need for extensive manual effort. This is a key reason for its rapid devel-

opment. However, reinforcement learning-based neural network architecture search

methods tend to focus too much on improving model accuracy while neglecting the limi-

tations of underlying hardware devices. The resulting models often have high hardware

Innovation & Technology Advances, 2023, 1(2), 1-24. 19

requirements and are challenging to deploy on embedded devices. Therefore, lightweight

network architecture design still faces some challenges. Future research directions include

finding a balance between model accuracy and hardware requirements and considering

the limitations of underlying hardware devices during the design process. It is essential

to develop methods that can optimize both the performance of the model and its compat-

ibility with resource-constrained devices.

Indeed, whether it is model pruning or network architecture design, the goal is not

only to reduce the complexity of convolutional neural networks but also to maintain or

even improve the original accuracy. With the rapid development of deep learning, emerg-

ing technologies such as Graph Neural Networks (GNNs) [128-130], and the integration

of neural networks with Transformers (e.g., Vision Transformers or ViTs) [131-133], have

gradually matured and gained recognition in the academic community. However, how to

lightweight these models and apply them to real-world industrial applications while en-

suring post-application security is a significant challenge for model compression and ac-

celeration techniques [134,135].

5. Conclusion

This paper summarizes the methods of model pruning and network architecture de-

sign in lightweight neural networks. Regarding model pruning methods, a comparison

and analysis of structured pruning and unstructured pruning algorithms are presented,

highlighting their characteristics. Generally, unstructured pruning exhibits irregularity

and requires specific hardware to leverage its advantages, while structured pruning offers

more pruning options and is more easily applicable to general-purpose hardware. Cur-

rently, structured pruning algorithms are commonly used. In terms of network architec-

ture design, this paper provides an overview of four lightweight neural networks:

SqueezeNet, GhostNet, ShuffleNet, and MobileNet. The mathematical principles behind

their ability to achieve model lightweight are explained, and their performance on the

ImageNet dataset is compared and analyzed. Based on existing work, it can be observed

that for model pruning, there is a need to establish a comprehensive evaluation metric

system to measure algorithm performance effectively. Regarding network architecture

design, further exploration is required to develop methods that can accelerate computa-

tion speed and reduce storage space while maintaining the accuracy of the original model

as much as possible.

References

1. Ge, D., Li, H., Zhang, L., et al. Survey of lightweight neural network. Journal of Software, 2020, 31: 2627-2653.

2. Kumari, A., Sharma, N. A Review on Convolutional Neural Networks for Skin Lesion Classification. International Conference

on Secure Cyber Computing and Communications. IEEE, 2021. https://doi.org/10.1109/icsccc51823.2021.9478151

3. Bouguettaya, A., Kechida, A., TABERKIT, A. M. A survey on lightweight CNN-based object detection algorithms for platforms

with limited computational resources. International Journal of Informatics and Applied Mathematics, 2019, 2(2): 28-44.

4. Jinlin M A, Yu Z, Ziping M A, et al. Research Progress of Lightweight Neural Network Convolution Design. Journal of Frontiers

of Computer Science and Technology, 2022, 16(3): 512-528. https://doi.org/10.3778/j.issn.1673-9418.2107056

5. Shen, X., Yi, B., Liu, H., et al. Deep variational matrix factorization with knowledge embedding for recommendation system,

IEEE Transactions on Knowledge and Data Engineering, 2019, 33(5): 1906-1918. https://doi.org/10.1109/tkde.2019.2952849

6. Li, Z., Li, H., Meng, L. Model Compression for Deep Neural Networks: A Survey. Computers, 2023, 12(3): 60.

https://doi.org/10.3390/computers12030060

7. Zeng, Y., Xiong, N., Park, J. H., et al. An emergency-adaptive routing scheme for wireless sensor networks for building fire

hazard monitoring. Sensors, 2010, 10(6): 6128-6148. https://doi.org/10.3390/s100606128

8. Li, Y., Liu, J., & Wang, L. Lightweight network research based on deep learning: A review. In 2018 37th Chinese control confer-

ence (CCC), IEEE, July, 2018. https://doi.org/10.23919/chicc.2018.8483963

9. Zheng, M., Tian, Y., Chen, H., et al. Lightweight network research based on deep learning. International Conference on Com-

puter Graphics, Artificial Intelligence, and Data Processing (ICCAID 2021). SPIE, 2022, 12168: 333-338.

https://doi.org/10.1117/12.2631211

https://doi.org/10.1109/icsccc51823.2021.9478151
https://doi.org/10.3778/j.issn.1673-9418.2107056
https://doi.org/10.1109/tkde.2019.2952849
https://doi.org/10.3390/computers12030060
https://doi.org/10.3390/s100606128
https://doi.org/10.23919/chicc.2018.8483963
https://doi.org/10.1117/12.2631211

Innovation & Technology Advances, 2023, 1(2), 1-24. 20

10. Xiao, Y., Tian, Z., Yu, J., et al. A review of object detection based on deep learning. Multimedia Tools and Applications, 2020,

79: 23729-23791. https://doi.org/10.1007/s11042-020-08976-6

11. Wang, C., Huang, K., Yao, Y., et al. Lightweight deep learning: An overview. IEEE Consumer Electronics Magazine, 2022.

https://doi.org/10.1109/MCE.2022.3181759

12. Kang, L., Chen, R., Xiong, N., et al. Selecting hyper-parameters of Gaussian process regression based on non-inertial particle

swarm optimization in Internet of Things. IEEE Access, 2019, 7: 59504-59513. https://doi.org/10.1109/access.2019.2913757

13. Zhao, J., Huang, J., Xiong, N. An effective exponential-based trust and reputation evaluation system in wireless sensor networks.

IEEE Access, 2019, 7: 33859-33869. https://doi.org/10.1109/access.2019.2904544

14. Yao, J., Li, P., Kang, X., et al. A pruning method based on the dissimilarity of angle among channels and filters. 2022 IEEE 34th

International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2022: 528-532. https://doi.org/10.1109/ic-

tai56018.2022.00084

15. Cong, S., Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artificial Intelligence Re-

view, 2023, 56(3): 1905-1969. https://doi.org/10.1007/s10462-022-10213-5

16. Hu, W., Fan, J., Du, Y., et al. MDFC–ResNet: an agricultural IoT system to accurately recognize crop diseases. IEEE Access, 2020,

8: 115287-115298. https://doi.org/10.1109/ACCESS.2020.3001237

17. Huang, S., Zeng, Z., Ota, K., et al. An intelligent collaboration trust interconnections system for mobile information control in

ubiquitous 5G networks. IEEE transactions on network science and engineering, 2020, 8(1): 347-365.

https://doi.org/10.1109/tnse.2020.3038454

18. Anwar, S., Hwang, K., Sung, W. Structured pruning of deep convolutional neural networks. ACM Journal on Emerging Tech-

nologies in Computing Systems (JETC), 2017, 13(3): 1-18. https://doi.org/10.1145/3005348

19. LeCun, Y., Denker, J., Solla, S. Optimal brain damage. Advances in neural information processing systems, 1989, 2: 598-605.

https://doi.org/http://dx.doi.org/

20. Hassibi, B., Stork, D. Second order derivatives for network pruning: Optimal brain surgeon. Advances in neural information

processing systems, 1992, 5.

21. Thimm, G., Fiesler, E. Evaluating pruning methods. Proceedings of the International Symposium on Artificial neural networks.

1995: 20-25.

22. Srinivas, S., Babu, R. V. Data-free parameter pruning for deep neural networks. arXiv preprint arXiv:1507.06149, 2015.

https://doi.org/10.5244/c.29.31

23. Han, S., Pool, J., Tran, J., et al. Learning both weights and connections for efficient neural network. Advances in neural infor-

mation processing systems, 2015, 28. https://doi.org/10.48550/arXiv.1506.02626

24. Han, S., Mao, H., Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv preprint , 2015. https://doi.org/10.48550/arXiv.1510.00149

25. Han, S., Liu, X., Mao, H., et al. EIE: Efficient inference engine on compressed deep neural network. ACM SIGARCH Computer

Architecture News, 2016, 44(3): 243-254. https://doi.org/10.1109/isca.2016.30

26. Guo, Y., Yao, A., Chen, Y. Dynamic network surgery for efficient dnns. Advances in neural information processing systems,

2016, 29. https://doi.org/10.48550/arXiv.1608.04493

27. Hu, H., Peng, R., Tai, Y., et al. Network trimming: A data-driven neuron pruning approach towards efficient deep architectures.

arXiv preprint, 2016. https://doi.org/10.48550/arXiv.1607.03250

28. Louizos, C., Welling, M., Kingma, D. P. Learning sparse neural networks through regularization. arXiv preprint, 2017.

https://doi.org/10.48550/arXiv.1712.01312

29. Ye, M., Gong, C., Nie, L., et al. Good subnetworks provably exist: Pruning via greedy forward selection. International Confer-

ence on Machine Learning. PMLR, 2020: 10820-10830. https://doi.org/10.48550/arXiv.2003.01794

30. Frankle, J., Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint, 2018.

https://doi.org/10.48550/arXiv.1803.03635

31. Wang, C., Zhang, G., Grosse, R. Picking winning tickets before training by preserving gradient flow. arXiv preprint, 2020.

https://doi.org/10.48550/arXiv.2002.07376

32. Zhang, T., Ye, S., Zhang, K., et al. StructADMM: A Systematic, High-Efficiency Framework of Structured Weight Pruning for

DNNs. 2018. https://doi.org/10.48550/arXiv.1807.11091

33. Xue, W., Bai, J., Sun, S., et al. Hierarchical Non-Structured Pruning for Computing-In-Memory Accelerators with Reduced ADC

Resolution Requirement. 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023: 1-6.

https://doi.org/10.23919/date56975.2023.10136975

34. Laurent, C., Ballas, C., George, T., et al. Revisiting loss modelling for unstructured pruning. arXiv preprint, 2020.

https://doi.org/10.48550/arXiv.2006.12279

35. Vahidian, S., Morafah, M., Lin, B. Personalized federated learning by structured and unstructured pruning under data hetero-

geneity. 2021 IEEE 41st international conference on distributed computing systems workshops (ICDCSW). IEEE, 2021: 27-34.

https://doi.org/10.48550/arXiv.2105.00562

36. Chen, X., Zhu, J., Jiang, J., et al. Tight compression: compressing CNN model tightly through unstructured pruning and simu-

lated annealing based permutation. 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020: 1-6.

https://doi.org/10.1109/dac18072.2020.9218701

https://doi.org/10.1007/s11042-020-08976-6
https://doi.org/10.1109/MCE.2022.3181759
https://doi.org/10.1109/access.2019.2913757
https://doi.org/10.1109/access.2019.2904544
https://doi.org/10.1109/ictai56018.2022.00084
https://doi.org/10.1109/ictai56018.2022.00084
https://doi.org/10.1007/s10462-022-10213-5
https://doi.org/10.1109/ACCESS.2020.3001237
https://doi.org/10.1109/tnse.2020.3038454
https://doi.org/http:/dx.doi.org/
https://doi.org/10.5244/c.29.31
https://doi.org/10.48550/arXiv.1506.02626
https://doi.org/10.48550/arXiv.1510.00149
https://doi.org/10.1109/isca.2016.30
https://doi.org/10.48550/arXiv.1608.04493
https://doi.org/10.48550/arXiv.1607.03250
https://doi.org/10.48550/arXiv.1712.01312
https://doi.org/10.48550/arXiv.2003.01794
https://doi.org/10.48550/arXiv.1803.03635
https://doi.org/10.48550/arXiv.2002.07376
https://doi.org/10.48550/arXiv.1807.11091
https://doi.org/10.23919/date56975.2023.10136975
https://doi.org/10.48550/arXiv.2006.12279
https://doi.org/10.48550/arXiv.2105.00562
https://doi.org/10.1109/dac18072.2020.9218701

Innovation & Technology Advances, 2023, 1(2), 1-24. 21

37. Molchanov, P., Tyree, S., Karras, T., et al. Pruning convolutional neural networks for resource efficient inference. arXiv preprint,

2016. https://doi.org/10.48550/arXiv.1611.06440

38. Molchanov, P., Mallya, A., Tyree, S., et al. Importance estimation for neural network pruning. Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2019: 11264-11272. https://doi.org/10.1109/cvpr.2019.01152

39. Luo, J., Wu, J., Lin, W. Thinet: A filter level pruning method for deep neural network compression. Proceedings of the IEEE

international conference on computer vision. 2017: 5058-5066. https://doi.org/10.1109/ICCV.2017.541

40. Mondal, M., Das, B., Roy, S. D., et al. Adaptive CNN filter pruning using global importance metric. Computer Vision and Image

Understanding, 2022, 222: 103511. https://doi.org/10.1016/j.cviu.2022.103511

41. Fletcher, P. T., Venkatasubramanian, S., Joshi, S. Robust statistics on Riemannian manifolds via the geometric median. 2008

IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-8. https://doi.org/10.1109/CVPR.2008.4587747

42. Ding, X., Ding, G., Guo, Y., et al. Approximated oracle filter pruning for destructive cnn width optimization. International

Conference on Machine Learning. PMLR, 2019: 1607-1616. https://doi.org/10.48550/arXiv.1905.04748

43. Lin, S., Ji, R., Yan, C., et al. Towards optimal structured cnn pruning via generative adversarial learning. Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition. 2019: 2790-2799. https://doi.org/10.1109/cvpr.2019.00290

44. Gao, X., Zhao, Y., Dudziak, Ł., et al. Dynamic channel pruning: Feature boosting and suppression. arXiv preprint, 2018.

https://doi.org/10.48550/arXiv.1810.05331

45. Wang, Y., Zhang, X., Hu, X., et al. Dynamic network pruning with interpretable layerwise channel selection. Proceedings of the

AAAI conference on artificial intelligence. 2020, 34(04): 6299-6306. https://doi.org/10.1609/aaai.v34i04.6098

46. Liu, Z., Mu, H., Zhang, X., et al. Metapruning: Meta learning for automatic neural network channel pruning. Proceedings of the

IEEE/CVF international conference on computer vision. 2019: 3296-3305. https://doi.org/10.1109/iccv.2019.00339

47. Li, H., Kadav, A., Durdanovic, I., et al. Pruning filters for efficient convnets. arXiv preprint, 2016. https://doi.org/10.48550/ar-

Xiv.1608.08710

48. Chen, Y., Wen, X., Zhang, Y., et al. CCPrune: Collaborative channel pruning for learning compact convolutional networks.

Neurocomputing, 2021, 451: 35-45. https://doi.org/10.1016/j.neucom.2021.04.063

49. Mondal, M., Das, B., Roy, S. D., et al. Adaptive CNN filter pruning using global importance metric. Computer Vision and Image

Understanding, 2022, 222: 103511. https://doi.org/10.1016/j.cviu.2022.103511

50. Tang, Y., Wang, Y., Xu, Y., et al. Manifold regularized dynamic network pruning. Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition. 2021: 5018-5028. https://doi.org/10.1109/cvpr46437.2021.00498

51. Lin, M., Ji, R., Wang, Y., et al. Hrank: Filter pruning using high-rank feature map. Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition. 2020: 1529-1538. https://doi.org/10.1109/cvpr42600.2020.00160

52. Polyak, A., Wolf, L. Channel-level acceleration of deep face representations. IEEE Access, 2015, 3: 2163-2175.

https://doi.org/10.1109/access.2015.2494536

53. He, Y., Zhang, X., Sun, J. Channel pruning for accelerating very deep neural networks. Proceedings of the IEEE international

conference on computer vision. 2017: 1389-1397. https://doi.org/10.1109/ICCV.2017.155

54. Yu, R., Li, A., Chen, C., et al. NISP: Pruning Networks Using Neuron Importance Score Propagation. IEEE, 2018.

https://doi.org/10.1109/CVPR.2018.00958

55. Liu, Z., Li, J., Shen, Z.,et al. Learning Efficient Convolutional Networks through Network Slimming. IEEE, 2017.

https://doi.org/10.1109/ICCV.2017.298

56. Huang, Z., Wang, N. Data-driven sparse structure selection for deep neural networks. Proceedings of the European conference

on computer vision (ECCV). 2018: 304-320. https://doi.org/10.1007/978-3-030-01270-0_19

57. Zhuang, Z., Tan, M., Zhuang, B., et al. Discrimination-aware channel pruning for deep neural networks. Advances in neural

information processing systems, 2018: 31. https://doi.org/10.48550/arXiv.1810.11809

58. Ye, J., Lu, X., Lin, Z., et al. Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers.

arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1802.00124

59. Ye, Y., You, G., Fwu, J. K., et al. Channel pruning via optimal thresholding. Neural Information Processing: 27th International

Conference, ICONIP 2020, Bangkok, Thailand, November 18–22, 2020, Proceedings, Part V 27. Springer International Publishing,

2020: 508-516. https://doi.org/10.1007/978-3-030-63823-8_58

60. Li, Y., Adamczewski, K., Li, W., et al. Revisiting random channel pruning for neural network compression. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 191-201.

https://doi.org/10.1109/CVPR52688.2022.00029

61. Yang, C., Liu, H. Channel pruning based on convolutional neural network sensitivity. Neurocomputing, 2022, 507: 97-106.

https://doi.org/10.1016/j.neucom.2022.07.051

62. Liu, N., Ma, X., Xu, Z., et al. Autocompress: An automatic dnn structured pruning framework for ultra-high compression rates.

Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(04): 4876-4883. https://doi.org/10.1609/aaai.v34i04.5924

63. Zhou, Y., Zhang, Y., Liu, H., et al. A bare-metal and asymmetric partitioning approach to client virtualization. IEEE Transactions

on Services Computing, 2012, 7(1): 40-53. https://doi.org/10.1109/TSC.2012.32

64. Wang, H., Fu, Y. Trainability preserving neural structured pruning. arXiv preprint arXiv:2207.12534, 2022.

65. Xiong, N., Han, W., Vandenberg, A. Green cloud computing schemes based on networks: a survey. Iet Communications, 2012,

6(18): 3294-3300. https://doi.org/10.1049/iet-com.2011.0293

https://doi.org/10.48550/arXiv.1611.06440
https://doi.org/10.1109/cvpr.2019.01152
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1016/j.cviu.2022.103511
https://doi.org/10.1109/CVPR.2008.4587747
https://doi.org/10.48550/arXiv.1905.04748
https://doi.org/10.1109/cvpr.2019.00290
https://doi.org/10.48550/arXiv.1810.05331
https://doi.org/10.1609/aaai.v34i04.6098
https://doi.org/10.1109/iccv.2019.00339
https://doi.org/10.48550/arXiv.1608.08710
https://doi.org/10.48550/arXiv.1608.08710
https://doi.org/10.1016/j.neucom.2021.04.063
https://doi.org/10.1016/j.cviu.2022.103511
https://doi.org/10.1109/cvpr46437.2021.00498
https://doi.org/10.1109/cvpr42600.2020.00160
https://doi.org/10.1109/access.2015.2494536
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/CVPR.2018.00958
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1007/978-3-030-01270-0_19
https://doi.org/10.48550/arXiv.1810.11809
https://doi.org/10.48550/arXiv.1802.00124
https://doi.org/10.1007/978-3-030-63823-8_58
https://doi.org/10.1109/CVPR52688.2022.00029
https://doi.org/10.1016/j.neucom.2022.07.051
https://doi.org/10.1609/aaai.v34i04.5924
https://doi.org/10.1109/TSC.2012.32
https://doi.org/10.1049/iet-com.2011.0293

Innovation & Technology Advances, 2023, 1(2), 1-24. 22

66. Fang, G., Ma, X., Song, M., et al. Depgraph: Towards any structural pruning. Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2023: 16091-16101. https://doi.org/10.1109/cvpr52729.2023.01544

67. Hanson, E., Li, S., Li, H., et al. Cascading structured pruning: enabling high data reuse for sparse DNN accelerators. Proceedings

of the 49th Annual International Symposium on Computer Architecture. 2022: 522-535. https://doi.org/10.1145/3470496.3527419

68. Bhalgaonkar, S. A., Munot, M. V., Anuse, A. D. Pruning for compression of visual pattern recognition networks: a survey from

deep neural networks perspective. Pattern recognition and data analysis with applications, 2022: 675-687.

https://doi.org/10.1007/978-981-19-1520-8_55

69. Choudhary, T., Mishra, V., Goswami, A., et al. A comprehensive survey on model compression and acceleration. Artificial

Intelligence Review, 2020, 53: 5113-5155. https://doi.org/10.1007/s10462-020-09816-7

70. Wang, J., Jin, C., Tang, Q., et al. Intelligent ubiquitous network accessibility for wireless-powered MEC in UAV-assisted B5G,

IEEE Transactions on Network Science and Engineering, 2020, 8 (4): 2801-2813. https://doi.org/10.1109/TNSE.2020.3029048

71. Zhang, W., Zhu, S., Tang, J., et al. A novel trust management scheme based on Dempster–Shafer evidence theory for malicious

nodes detection in wireless sensor networks, The Journal of Supercomputing, 2018, 74 (4): 1779-1801.

https://doi.org/10.1007/s11227-017-2150-3

72. Simonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint, 2014.

https://doi.org/10.48550/arXiv.1409.1556

73. Huang, G., Liu, Z., Pleiss, G., et al. Convolutional networks with dense connectivity. IEEE transactions on pattern analysis and

machine intelligence, 2019, 44(12): 8704-8716. https://doi.org/10.1109/TPAMI.2019.2918284

74. Han, D., Kim, J., Kim, J. Deep pyramidal residual networks. Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017: 5927-5935. https://doi.org/10.1109/cvpr.2017.668

75. Iandola, F. N., Han, S., Moskewicz, M. W., et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB

model size. arXiv preprint, 2016. https://doi.org/10.48550/arXiv.1602.07360

76. Krizhevsky, A., Sutskever, I., Hinton, G. E. Imagenet classification with deep convolutional neural networks. Advances in neu-

ral information processing systems, 2012: 25. https://doi.org/10.1145/3065386

77. Gholami, A., Kwon, K., Wu, B., et al. Squeezenext: Hardware-aware neural network design. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops. 2018: 1638-1647. https://doi.org/10.1109/CVPRW.2018.00215

78. MS, M., SS, S. R. Optimal Squeeze Net with Deep Neural Network-Based Arial Image Classification Model in Unmanned Aerial

Vehicles. Traitement du Signal, 2022, 39(1): 275-281. https://doi.org/10.18280/ts.390128

79. Pierezan, J., Coelho, L. D. S. Coyote optimization algorithm: a new metaheuristic for global optimization problems. 2018 IEEE

congress on evolutionary computation (CEC). IEEE, 2018: 1-8. https://doi.org/10.1109/CEC.2018.8477769

80. Bernardo, L. S., Damaševičius, R., Ling, S., et al. Modified squeezenet architecture for parkinson’s disease detection based on

keypress data. Biomedicines, 2022, 10(11): 2746. https://doi.org/10.3390/biomedicines10112746

81. Nirmalapriya, G., Maram, B., Lakshmanan, R., et al. ASCA-squeeze net: Aquila sine cosine algorithm enabled hybrid deep

learning networks for digital image forgery detection. Computers \& Security, 2023, 128: 103155.

https://doi.org/10.1016/j.cose.2023.103155

82. Han, K., Wang, Y., Tian, Q., et al. Ghostnet: More features from cheap operations. Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition. 2020: 1580-1589. https://doi.org/10.1109/CVPR42600.2020.00165

83. Howard, A., Sandler, M., Chu, G., et al. Searching for mobilenetv3. Proceedings of the IEEE/CVF international conference on

computer vision. 2019: 1314-1324. https://doi.org/10.1109/ICCV.2019.00140

84. Yuan, X., Li, D., Sun, P., et al. Real-Time Counting and Height Measurement of Nursery Seedlings Based on Ghostnet–YoloV4

Network and Binocular Vision Technology. Forests. 2022, 13(9):1459. https://doi.org/10.3390/f13091459

85. Chi, J., Guo, S., Zhang, H., et al. L-GhostNet: Extract Better Quality Features. IEEE Access, 2023, 11: 2361-2374.

https://doi.org/10.1109/access.2023.3234108

86. Ke, X., Hou, W., Meng, L. Research on Pet Recognition Algorithm With Dual Attention GhostNet-SSD and Edge Devices. IEEE

Access, 2022, 10: 131469-131480. https://doi.org/10.1109/ACCESS.2022.3228808

87. Wang, X., Kan, M., Shan, S., et al. Fully learnable group convolution for acceleration of deep neural networks. Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition. 2019: 9049-9058. https://doi.org/10.1109/CVPR.2019.00926

88. Cohen, T., Welling, M. Group equivariant convolutional networks. International conference on machine learning. PMLR, 2016:

2990-2999. https://doi.org/10.48550/arXiv.1602.07576

89. Zhang, J., Zhao, H., Yao, A., et al. Efficient semantic scene completion network with spatial group convolution. Proceedings of

the European Conference on Computer Vision (ECCV). 2018: 733-749. https://doi.org/10.1007/978-3-030-01258-8_45

90. Zhang, X., Zhou, X., Lin, M., et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices. Proceed-

ings of the IEEE conference on computer vision and pattern recognition. 2018: 6848-6856.

https://doi.org/10.1109/CVPR.2018.00716

91. Ma, N., Zhang, X., Zheng, H., et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design. Proceedings of the

European conference on computer vision (ECCV). 2018: 116-131. https://doi.org/10.1007/978-3-030-01264-9_8

92. Vu, D. Q., Le, N. T., Wang, J. (2+ 1) D Distilled ShuffleNet: A Lightweight Unsupervised Distillation Network for Human Action

Recognition. 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022: 3197-3203.

https://doi.org/10.1109/icpr56361.2022.9956634

https://doi.org/10.1109/cvpr52729.2023.01544
https://doi.org/10.1145/3470496.3527419
https://doi.org/10.1007/978-981-19-1520-8_55
https://doi.org/10.1007/s10462-020-09816-7
https://doi.org/10.1109/TNSE.2020.3029048
https://doi.org/10.1007/s11227-017-2150-3
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/TPAMI.2019.2918284
https://doi.org/10.1109/cvpr.2017.668
https://doi.org/10.48550/arXiv.1602.07360
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPRW.2018.00215
https://doi.org/10.18280/ts.390128
https://doi.org/10.1109/CEC.2018.8477769
https://doi.org/10.3390/biomedicines10112746
https://doi.org/10.1016/j.cose.2023.103155
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.3390/f13091459
https://doi.org/10.1109/access.2023.3234108
https://doi.org/10.1109/ACCESS.2022.3228808
https://doi.org/10.1109/CVPR.2019.00926
https://doi.org/10.48550/arXiv.1602.07576
https://doi.org/10.1007/978-3-030-01258-8_45
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1109/icpr56361.2022.9956634

Innovation & Technology Advances, 2023, 1(2), 1-24. 23

93. Chen, Z., Yang, J., Chen, L., et al. Garbage classification system based on improved ShuffleNet v2. Resources, Conservation and

Recycling, 2022, 178: 106090. https://doi.org/10.1016/j.resconrec.2021.106090

94. Wang, Y., Xu, X., Wang, Z., et al. ShuffleNet-Triplet: A lightweight RE-identification network for dairy cows in natural scenes.

Computers and Electronics in Agriculture, 2023, 205: 107632. https://doi.org/10.2139/ssrn.4227546

95. Howard, A. G., Zhu, M., Chen, B., et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications.

arXiv preprint, 2017. https://doi.org/10.48550/arXiv.1704.04861

96. Sandler, M., Howard, A., Zhu, M., et al. Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE con-

ference on computer vision and pattern recognition. 2018: 4510-4520. https://doi.org/10.1109/CVPR.2018.00474

97. Chen, Y., Dai, X., Chen, D., et al. Mobile-former: Bridging mobilenet and transformer. Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2022: 5270-5279. https://doi.org/10.1109/CVPR52688.2022.00520

98. Nan, Y., Ju, J., Hua, Q., et al. A-MobileNet: An approach of facial expression recognition. Alexandria Engineering Journal, 2022,

61(6): 4435-4444. https://doi.org/10.1016/j.aej.2021.09.066

99. Huang, J., Mei, L., Long, M., et al. Bm-net: Cnn-based mobilenet-v3 and bilinear structure for breast cancer detection in whole

slide images. Bioengineering, 2022, 9(6): 261. https://doi.org/10.3390/bioengineering9060261

100. Zhang, K., Cheng, K., Li, J., et al. A channel pruning algorithm based on depth-wise separable convolution unit. IEEE Access,

2019, 7: 173294-173309. https://doi.org/10.1109/ACCESS.2019.2956976

101. Shen, Y., Fang, Z., Gao, Y., et al., Coronary arteries segmentation based on 3D FCN with attention gate and level set function,

Ieee Access , 2019,7: 42826-42835. https://doi.org/10.1109/ACCESS.2019.2908039

102. Hung, K. W., Zhang, Z., Jiang, J. Real-time image super-resolution using recursive depthwise separable convolution network.

IEEE Access, 2019, 7: 99804-99816. https://doi.org/10.1109/ACCESS.2019.2929223

103. Wang, G., Ding, H., Li, B., et al. Trident‐YOLO: Improving the precision and speed of mobile device object detection. IET Image

Processing, 2022, 16(1): 145-157. https://doi.org/10.1049/ipr2.12340

104. Wan, R., Xiong, N., Hu, Q., et al. Similarity-aware data aggregation using fuzzy c-means approach for wireless sensor networks,

EURASIP Journal on Wireless Communications and Networking, 2019: 1-11. https://doi.org/10.1186/s13638-019-1374-8

105. Yang, S., Xing, Z., Wang, H., et al. Maize-YOLO: a new high-precision and real-time method for maize pest detection. Insects,

2023, 14(3): 278. https://doi.org/10.3390/insects14030278

106. Tan, M., Chen, B., Pang, R., et al. Mnasnet: Platform-aware neural architecture search for mobile. Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2019: 2820-2828. https://doi.org/10.48550/arXiv.1807.11626

107. Huang, G., Liu, S., Maaten, L. V., et al. Condensenet: An efficient densenet using learned group convolutions. Proceedings of

the IEEE conference on computer vision and pattern recognition. 2018: 2752-2761. https://doi.org/10.1109/CVPR.2018.00291

108. Mehta, S., Rastegari, M., Caspi, A., et al. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation.

Proceedings of the european conference on computer vision (ECCV). 2018: 552-568. https://doi.org/10.1007/978-3-030-01249-

6_34

109. Mehta, S., Rastegari, M., Shapiro, L., et al. Espnetv2: A light-weight, power efficient, and general purpose convolutional neural

network. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 9190-9200.

https://doi.org/10.1109/CVPR.2019.00941

110. Gao, H., Wang, Z., Ji, S. Channelnets: Compact and efficient convolutional neural networks via channel-wise convolutions.

Advances in neural information processing systems, 2018, 31. https://doi.org/10.1109/TPAMI.2020.2975796

111. Wang, R., Li, X., Ling, C. Pelee: A real-time object detection system on mobile devices. Advances in neural information pro-

cessing systems, 2018, 31. https://doi.org/10.48550/arXiv.1804.06882

112. Zhang, T., Qi, G., Xiao, B., et al. Interleaved group convolutions. Proceedings of the IEEE international conference on computer

vision. 2017: 4373-4382. https://doi.org/10.1109/ICCV.2017.469

113. Xie, G., Wang, J., Zhang, T., et al. Interleaved structured sparse convolutional neural networks. Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition. 2018: 8847-8856. https://doi.org/10.48550/arXiv.1804.06202

114. Sun, K., Li, M., Liu, D., et al. Igcv3: Interleaved low-rank group convolutions for efficient deep neural networks. arXiv preprint,

2018. https://doi.org/10.48550/arXiv.1806.00178

115. Wu, B., Dai, X., Zhang, P., et al. Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search.

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 10734-10742.

https://doi.org/10.1109/CVPR.2019.01099

116. Wan, A., Dai, X., Zhang, P., et al. Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions. Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 12965-12974.

https://doi.org/10.1109/cvpr42600.2020.01298

117. Dai, X., Wan, A., Zhang, P., et al. Fbnetv3: Joint architecture-recipe search using predictor pretraining. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 16276-16285.

https://doi.org/10.1109/cvpr46437.2021.01601

118. Koonce, B. EfficientNet. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categori-

zation, 2021: 109-123. https://doi.org/10.1007/978-1-4842-6168-2

119. Tan, M., Le, Q. Efficientnetv2: Smaller models and faster training. International conference on machine learning. PMLR, 2021:

10096-10106. https://doi.org/10.48550/arXiv.2104.00298

https://doi.org/10.1016/j.resconrec.2021.106090
https://doi.org/10.2139/ssrn.4227546
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR52688.2022.00520
https://doi.org/10.1016/j.aej.2021.09.066
https://doi.org/10.3390/bioengineering9060261
https://doi.org/10.1109/ACCESS.2019.2956976
https://doi.org/10.1109/ACCESS.2019.2908039
https://doi.org/10.1109/ACCESS.2019.2929223
https://doi.org/10.1049/ipr2.12340
https://doi.org/10.1186/s13638-019-1374-8
https://doi.org/10.3390/insects14030278
https://doi.org/10.48550/arXiv.1807.11626
https://doi.org/10.1109/CVPR.2018.00291
https://doi.org/10.1007/978-3-030-01249-6_34
https://doi.org/10.1007/978-3-030-01249-6_34
https://doi.org/10.1109/CVPR.2019.00941
https://doi.org/10.1109/TPAMI.2020.2975796
https://doi.org/10.48550/arXiv.1804.06882
https://doi.org/10.1109/ICCV.2017.469
https://doi.org/10.48550/arXiv.1804.06202
https://doi.org/10.48550/arXiv.1806.00178
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/cvpr42600.2020.01298
https://doi.org/10.1109/cvpr46437.2021.01601
https://doi.org/10.1007/978-1-4842-6168-2
https://doi.org/10.48550/arXiv.2104.00298

Innovation & Technology Advances, 2023, 1(2), 1-24. 24

120. Ma, N., Zhang, X., Huang, J., et al. Weightnet: Revisiting the design space of weight networks. European Conference on Com-

puter Vision. Cham: Springer International Publishing, 2020: 776-792. https://doi.org/10.1007/978-3-030-58555-6_46

121. Li, Y., Chen, Y., Dai, X., et al. Micronet: Improving image recognition with extremely low flops. Proceedings of the IEEE/CVF

International conference on computer vision. 2021: 468-477. https://doi.org/10.48550/arXiv.2108.05894

122. Tsivgoulis, M., Papastergiou, T., Megalooikonomou, V. An improved SqueezeNet model for the diagnosis of lung cancer in CT

scans. Machine Learning with Applications, 2022, 10: 100399. https://doi.org/10.1016/j.mlwa.2022.100399

123. Mishra, D., Singh, S. K., Singh, R. K. Deep architectures for image compression: a critical review. Signal Processing, 2022, 191:

108346. https://doi.org/10.1016/j.sigpro.2021.108346

124. Wang, Y., Fang, W., Ding, Y., et al. Computation offloading optimization for UAV-assisted mobile edge computing: a deep

deterministic policy gradient approach, Wireless Networks, 2021, 27 (4): 2991-3006. https://doi.org/10.1007/s11276-021-02632-z

125. Veza, I., Afzal, A., Mujtaba, M. A., et al. Review of artificial neural networks for gasoline, diesel and homogeneous charge

compression ignition engine. Alexandria Engineering Journal, 2022, 61(11): 8363-8391. https://doi.org/10.1016/j.aej.2022.01.072

126. Liu, Z., Sun, M., Zhou, T., et al. Rethinking the value of network pruning. arXiv preprint, 2018.

https://doi.org/10.48550/arXiv.1810.05270

127. Wang, W., Chen, M., Zhao, S., et al. Accelerate cnns from three dimensions: A comprehensive pruning framework. International

Conference on Machine Learning. PMLR, 2021: 10717-10726. https://doi.org/10.48550/arXiv.2010.04879

128. Zhou, J., Cui, G., Hu, S., et al. Graph neural networks: A review of methods and applications. AI open, 2020, 1: 57-81.

https://doi.org/10.1016/j.aiopen.2021.01.001

129. Wu, Z., Pan, S., Chen, F., et al. A comprehensive survey on graph neural networks. IEEE transactions on neural networks and

learning systems, 2020, 32(1): 4-24. https://doi.org/10.1109/TNNLS.2020.2978386

130. Scarselli, F., Gori, M., Tsoi, A. C., et al. The graph neural network model. IEEE transactions on neural networks, 2008, 20(1): 61-

80. https://doi.org/10.1109/TNN.2008.2005605

131. Han, K., Wang, Y., Chen, H., et al. A survey on vision transformer. IEEE transactions on pattern analysis and machine intelli-

gence, 2022, 45(1): 87-110. https://doi.org/10.1109/TPAMI.2022.3152247

132. Zhou, D., Kang, B., Jin, X., et al. Deepvit: Towards deeper vision transformer. arXiv preprint, 2021.

https://doi.org/10.48550/arXiv.2103.11886

133. Khan, S., Naseer, M., Hayat, M., et al. Transformers in vision: A survey. ACM computing surveys (CSUR), 2022, 54(10s): 1-41.

https://doi.org/10.48550/arXiv.2101.01169

134. Liang, W., Xie, S., Cai, J., et al. Novel private data access control scheme suitable for mobile edge computing. China Communi-

cations, 2021, 18(11): 92-103. https://doi.org/10.23919/jcc.2021.11.007

135. Liang, W., Li, Y., Xie, K., et al. Spatial-temporal aware inductive graph neural network for C-ITS data recovery. IEEE Transac-

tions on Intelligent Transportation Systems, 2023, 24(8): 8431–8442. https://doi.org/10.1109/tits.2022.3156266

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of BSP and/or the editor(s). BSP and/or the editor(s) disclaim responsibility for any injury to people

or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-030-58555-6_46
https://doi.org/10.48550/arXiv.2108.05894
https://doi.org/10.1016/j.mlwa.2022.100399
https://doi.org/10.1016/j.sigpro.2021.108346
https://doi.org/10.1007/s11276-021-02632-z
https://doi.org/10.1016/j.aej.2022.01.072
https://doi.org/10.48550/arXiv.1810.05270
https://doi.org/10.48550/arXiv.2010.04879
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TPAMI.2022.3152247
https://doi.org/10.48550/arXiv.2103.11886
https://doi.org/10.48550/arXiv.2101.01169
https://doi.org/10.23919/jcc.2021.11.007
https://doi.org/10.1109/tits.2022.3156266

