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Abstract: The application of portable devices based on deep learning has become increasingly wide-

spread, which has made the deployment of complex neural networks on embedded devices a hot 

research topic. Neural network lightweighting is one of the key technologies for applying neural 

networks to embedded devices. This paper elaborates and analyzes neural network lightweighting 

techniques from two aspects: model pruning and network structure design. For model pruning, a 

comparison of methods from different periods is conducted, highlighting their advantages and lim-

itations. Regarding network structure design, the principles of four classical lightweight network 

designs are described from a mathematical perspective, and the latest optimization methods for 

these networks are reviewed. Finally, potential research directions for lightweight neural network 

pruning and structure design optimization are discussed.  

Keywords: lightweighting techniques for neural networks; model pruning; network structure de-

sign; convolutional structure optimization 

 

1. Introduction 

Deep learning differs significantly from traditional manual feature design. Convolu-

tional neural networks (CNNs) employed in deep learning can automatically extract deep 

features of targets without the need for manual feature extraction. This characteristic 

greatly reduces the difficulty of applying image recognition [1-3]. Consequently, deep 

CNNs have become increasingly mature and successful in various fields such as military, 

transportation, and healthcare. However, in order to achieve higher accuracy, the depth 

of neural networks continues to increase, resulting in higher computational complexity 

and storage requirements. As performance demands escalate, efficiency becomes a pri-

mary concern in network design. Specifically, efficiency issues primarily involve model 

storage and prediction speed. Therefore, lightweighting techniques are needed to address 

efficiency concerns while maintaining accuracy [4-7].  

The goal of model lightweighting is to address the inability of traditional neural net-

works to run on small-scale hardware in terms of storage space and energy consumption. 

To achieve this goal, optimization techniques such as network structure design and model 

compression are primarily employed to reduce storage requirements, improve execution 

speed, and maintain the accuracy of traditional neural networks [8-10]. In recent years, 

the research direction of lightweight neural networks has been continuously expanding, 

requiring ongoing exploration, comparison, and updates. It is worth noting that excellent 

lightweight network models often possess multifunctionality, and the optimization 

trends have become diverse, no longer limited to a single model compression algorithm 

or the replacement of lightweight modules. Therefore, a comprehensive summary of op-

timization methods for lightweight neural network architectures is necessary [11-13].  

This paper provides a comprehensive review of classical compression algorithms 

and network structures for neural networks. Firstly, it elaborates on model pruning algo-
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rithms and analyzes and summarizes recent research advancements based on these algo-

rithms. Model pruning encompasses structured pruning and unstructured pruning, with 

structured pruning covering techniques such as convolutional kernel pruning and chan-

nel pruning [14]. Next, it analyzes some classical lightweight neural networks from the 

perspectives of lightweight module design and convolutional structure optimization, and 

summarizes the latest research achievements based on these network structures. Finally, 

it discusses the prospects and challenges of lightweight neural networks and provides a 

comprehensive conclusion [15-17]. 

The paper is organized as follows: Section II introduces two pruning algorithms for 

model pruning and analyzes their advantages and disadvantages. Section III presents the 

ideas and methods of network structure design, summarizing four lightweight network 

structures that have been applied and improved in recent years. It also analyzes the char-

acteristics and performance of these network structures. Section IV discusses the future 

development trends and challenges of lightweight neural networks. Section V provides a 

comprehensive summary of the work conducted in this paper. 

2. Model pruning 

Model pruning is one of the most commonly used methods in compressing neural 

network models. Its primary objective is to reduce computational complexity and model 

size by removing unimportant neurons in the neural network. Model pruning algorithms 

can be categorized into two types: unstructured pruning and structured pruning. The clas-

sification of model pruning methods [18] is illustrated in Figure 1. The distinction lies in 

whether the entire node or convolutional kernel is removed all at once. 

 

Figure 1. Classification methods for model pruning. 

In unstructured pruning algorithms, each element of every convolutional kernel is 

considered, and the parameter information with zero values in the kernels is removed. 

This pruning method takes into account each parameter in the network model, allowing 

for more fine-grained pruning. In contrast, structured pruning algorithms employ a 

coarse-grained pruning approach by directly removing the structured information of en-

tire convolutional kernels. This can effectively reduce the size of the model and improve 

its performance. Specifically, kernel pruning refers to the removal of a group of convolu-

tional kernels in a convolutional layer, while channel pruning refers to the removal of 

entire channels in a convolutional layer. This subdivision provides a clearer description 

of the different ways in which structured pruning can be performed. 

2.1. Unstructured pruning 

Unstructured pruning does not adhere to specific geometric shapes or constraints 

when removing the parameter information with zero values in the convolutional kernels. 

Figure 2 illustrates the process of unstructured pruning, demonstrating the fine-grained 

pruning approach. 
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Figure 2. Fine-grained pruning process. 

This paper investigates the representative works and recent advances in unstruc-

tured pruning algorithms. The earliest pruning algorithm can be traced back to the Opti-

mal Brain Damage (OBD) algorithm proposed in reference [19], which belongs to the cat-

egory of single-weight pruning algorithms within unstructured pruning. The OBD algo-

rithm utilizes the Hessian matrix based on the loss function to calculate parameter weights 

and prunes the parameters with lower weights. However, the OBD algorithm simplifies 

the calculation of the Hessian matrix by ignoring the off-diagonal terms, which is a hypo-

thetical simplification. Subsequently, reference [20] studied the off-diagonal terms of the 

Hessian matrix and discovered that the assumption made by the OBD algorithm is invalid 

in many cases. To overcome the limitations of the OBD algorithm, reference [19] proposed 

the Optimal Brain Surgeon (OBS) method, which utilizes all second-order derivative in-

formation of the error function for network pruning without the need for retraining. Both 

the OBD and OBS algorithms share a similar drawback, which is the high computational 

complexity involved in computing and updating the significance of all parameters in each 

iteration. To address this issue, reference [21] proposed a method that uses the minimum 

contribution variance as the pruning criterion. If a parameter's output remains almost the 

same before and after bias, its contribution is considered insignificant, these parameters, 

which have the smallest contribution variances on the training set, can be removed. 

 

Figure 3. The three main steps of the pruning process. 
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In addition, reference [22] proposed a method that directly constructs a weight sali-

ency matrix and performs sorting to select insignificant redundant nodes for pruning. 

Furthermore, in reference [23], a method based on learning weight connectivity im-

portance for pruning was introduced. This method consists of three steps, as shown in 

Figure 3. Through an iterative process of connection pruning and weight training, it can 

reduce the storage and computational requirements by an order of magnitude while 

maintaining accuracy. 

2.2 Structured pruning 

In contrast to unstructured pruning algorithms, structured pruning algorithms target 

entire structures (such as convolutional kernels or channels) rather than individual pa-

rameters. By removing entire structures at once without the need to individually compute 

parameters, structured pruning algorithms have significantly lower complexity compared 

to unstructured pruning algorithms. Therefore, structured pruning algorithms have be-

come an important direction in pruning algorithm research. This paper categorizes struc-

tured pruning into two types: convolutional kernel pruning and channel pruning, and 

discusses them [34-36]. 

2.2.1 Convolution kernel pruning 

Convolutional kernel pruning is a coarse-grained pruning method characterized by 

the simultaneous pruning of connected input channels in the subsequent layer when 

pruning a specific convolutional kernel in a convolutional layer. This method effectively 

reduces the number of parameters in the model by removing convolutional kernels with 

lower importance. Figure 4 illustrates the process of convolutional kernel pruning. 

 

Figure 4. Illustration of the convolutional kernel pruning process. 

In reference [37], an algorithm based on global search and convolutional kernel sali-

ency is proposed. In reference [37], an algorithm based on global search and convolutional 

kernel saliency is proposed. The algorithm utilizes the Taylor expansion criterion to ex-

pand the objective function and identifies the convolutional kernel that causes the least 

change in the objective function as the salient kernel. It then replaces the salient kernel 
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with zero values. Reference [38] improves upon the aforementioned algorithm by intro-

ducing consistent extension capabilities to any layer in the network, eliminating the need 

for sensitivity analysis on each layer. Reference [39] introduces the ThiNet pruning algo-

rithm, which establishes a one-to-one relationship between the current layer's convolu-

tional kernels and the next layer's input channels through convolutional computations. 

This relationship is utilized to explore the saliency of the input channels for the next layer's 

convolutional kernels. In reference [40], a novel pruning method for convolutional kernels 

is proposed, known as Filter Pruning via Geometric Median (FPGM). The central idea of 

the geometric median, as described in reference [41], is as follows: Given a set of points 

with a quantity of 
( ) ( )( )1

  , ,
n

n a a , for each point ( )i da  , find a point * dx   such that 

the sum of their Euclidean distances is minimized. This is shown in Equation (1). This 

pruning method is able to satisfy both the requirements of a larger paradigm deviation 

for the filter and a smaller minimum criterion for the filter. And its usefulness and ad-

vantages are verified on two image classification benchmarks. Reference [42] introduces 

an approximate Oracle convolutional kernel pruning algorithm. This algorithm prunes 

the kernels by randomly masking them and calculates the cumulative change in the out-

put of the next layer to search for the least significant kernels. Furthermore, reference [43] 

proposes an end-to-end joint pruning method that can simultaneously prune convolu-

tional kernels and other structures. By employing generative adversarial learning tech-

niques, this method effectively addresses the optimization problem. Reference [44] pre-

sents a dynamic pruning algorithm. This algorithm dynamically predicts the saliency of 

the next layer's convolutional channels during the training process and skips channels 

with lower saliency. This dynamic nature allows different input images to flexibly skip 

different channels based on their characteristics. Moreover, reference [45] introduces the 

meta-convolutional kernel pruning algorithm, which considers the relationships between 

convolutional kernels and constructs a meta-pruning framework to adaptively select ap-

propriate pruning methods when the distribution of kernels changes. Reference [46] pro-

poses a meta-learning pruning algorithm. This algorithm first trains a pruning network 

using random structure sampling and utilizes meta-learning to predict the accuracy of the 

pruned network. It can search for pruned networks under different constraints without 

requiring manual intervention and does not require fine-tuning during the search process. 

 ( ) ( )
 

( )*

2

1.

arg min ,
i d

i n

x f x where f x x a x


=  −   (1) 

Reference [47] proposes a method called overall global pruning, which uses the idea 

of pruning convolutional kernels to address the limitations of amplitude-based methods 

when pruning fully connected layers. Furthermore, in reference [48], a novel method 

named Collaborative Channel Pruning (CCPrune) is introduced. This method effectively 

assesses the significance of channels by incorporating the weights of convolutional layers 

and the scaling factors of Batch Normalization (BN) layers. Moreover, reference [49] in-

troduces a method known as Global Filter Importance-based Adaptive Pruning (GFI-AP). 

This approach assigns importance scores to each convolutional kernel by evaluating how 

effectively the network learns the mapping from input to output using the dataset. This 

enables a comprehensive comparison among the kernels. Reference [50] proposes a 

method for dynamically removing redundant convolutional kernels by embedding man-

ifold information of all instances into the pruned network space. By aligning the manifold 

information between the recognition complexity and feature similarity of images in the 

training set with the pruned subnetwork, it maximizes the utilization of redundancy 

within the given network structure. Reference [51] introduces a novel method for pruning 

convolutional kernels, utilizing feature map ranking (HRank) for exploration and devel-

oping a mathematical formula for kernel pruning. 
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2.2.2 Channel pruning 

Channel pruning is a method used to prune redundant channels in feature maps, 

without considering the impact of convolutional kernel weights. It is particularly effective 

in cases where there is a significant amount of redundancy in the feature maps. The pro-

cess of channel pruning is illustrated in Figure 5. By pruning redundant channels, model 

compression can be achieved. One of the advantages of channel pruning is that it does not 

rely on sparse convolutional computation libraries or specialized hardware, yet it can still 

achieve high compression rates. 

 

Figure 5. Illustration of the channel pruning process. 

Reference [52] proposes a method based on eliminating low-activity channels, which 

reduces the computational operations between each convolutional kernel and channels 

that do not contribute significantly to the model's predictions. This method effectively 

reduces the computational load without significantly impacting the model's performance. 

Similarly, at the channel level, reference [53] introduces a channel pruning method based 

on LASSO regularization and linear least squares. This method first identifies and re-

moves redundant convolutional kernels and their corresponding feature maps, reducing 

the model's parameter count and computational complexity. Then, the remaining network 

is reconstructed to restore the model's predictive ability. Building upon the work in refer-

ence [53], reference [54] argues for the necessity of jointly pruning neurons across the en-

tire neural network based on a unified objective. By considering the relationships between 

different neurons and their contributions to the overall network performance during the 

pruning process, a unified objective ensures that the pruned network maintains good pre-

dictive performance during the retraining phase. Reference [55] proposes a network slim-

ming method, which is a commonly used pruning algorithm for many large-scale net-

works. The core idea is to introduce a scaling factor 


 for each channel and establish an 

objective function as shown in Equation (2): 

 
( )

( )( ) ( )
,

  , ,
x y y

L l f x w y g


 


= +   (2) 
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Equation (2) where x and y are the input and output of the feature map respectively, 
w  is the weight, ( )g   is the penalty term,   is the scaling factor, and   is the balance 

factor. The joint optimisation of the regular term of the scaling factor   and the weight 

loss function automatically identifies and removes unimportant channels to improve the 

computational speed of the network. The network thinning process is shown in Figure 6. 

 

Figure 6. Illustration of the network slimming process. 

Reference [56] presents a more general and effective improvement to the method pro-

posed in reference [55]. Instead of directly using the parameters of the Batch Normaliza-

tion (BN) layer, this approach introduces additional scale factors to enhance the method's 

applicability. Reference [57] proposes a discriminative-aware channel pruning method for 

pre-trained models. This method introduces an additional channel-aware loss function, 

which is combined with the classification loss function, and incorporates reconstruction 

error. It utilizes the 2.0L  norm to iteratively induce sparsity in channel pruning and pa-

rameter optimization. Reference [58] challenges the effectiveness of norm-based calcula-

tions and proposes a norm-independent channel pruning technique. This method em-

ploys an end-to-end random training approach, enforcing the constant output of certain 

channels and then adjusting the biases of the affected layers to eliminate these constant 

channels, achieving channel pruning. Furthermore, in reference [59], an optimal thresh-

olding (OT) method is proposed. This method aims to prune channels with layer-corre-

lated thresholds, optimally separating important channels from negligible ones. By utiliz-

ing OT, most unimportant channels are pruned to achieve high sparsity while minimizing 

performance degradation. In reference [60], researchers attempt to determine the channel 

configuration for pruning models through random search. Experimental results demon-

strate the effectiveness of this simple strategy compared to other channel pruning meth-

ods. Existing methods often treat the pruning rate as a hyperparameter and overlook the 

sensitivity of different convolutional layers. Reference [61] introduces a sensitivity-based 

channel pruning method, measuring it using second-order sensitivity. The underlying 

concept involves the selective pruning of insensitive filters while preserving the sensitive 

ones. This is achieved by quantifying the sensitivity of a convolutional kernel through the 

summation of sensitivities of its individual weights. Additionally, the method incorpo-

rates layer sensitivity by considering Hessian eigenvalues, thereby automating the pro-

cess of determining the optimal pruning rate for each layer. 

2.3. Analysis and discussion 

By analyzing pruning algorithms from different periods, including the latest ones, 

we can observe significant advantages of unstructured pruning. The most notable ad-

vantage is its ability to directly zero out or trim a large number of parameters, resulting 

in a highly sparse model that does not significantly affect model accuracy. Additionally, 



Innovation & Technology Advances, 2023, 1(2), 1-24. 8  
 

 

unstructured pruning can modify parameters based on the underlying logic of different 

hardware, leading to improved acceleration. However, unstructured pruning also has no-

ticeable drawbacks. Firstly, due to its consideration of the impact of individual neurons 

on the network, unstructured pruning algorithms can be computationally intensive. Sec-

ondly, simply applying unstructured pruning does not directly accelerate sparse matrix 

computations, as the size of the pruned matrix remains unchanged. This means that sparse 

matrix multiplication and other computations are still required, which may not yield sub-

stantial acceleration on certain hardware. Moreover, unstructured pruning algorithms 

may rely on specific software or hardware implementations, limiting their flexibility and 

portability across different deep-learning frameworks. In contrast, structured pruning al-

gorithms have advantages in these aspects. Structured pruning reduces computational 

complexity, simplifies sparse matrix computations, and is easier to use across different 

deep learning frameworks. Consequently, recent research has been inclined towards em-

ploying structured pruning algorithms for model pruning [62-67]. 

Structured pruning algorithms have advantages in terms of hardware acceleration 

and prediction accuracy because they consider a more comprehensive set of factors. Com-

pared to unstructured pruning, structured pruning can achieve model compression and 

acceleration by pruning entire convolutional kernels or channels. However, structured 

pruning algorithms also have some limitations. Firstly, in convolutional kernel pruning 

algorithms, the relationships between kernels are often overlooked. Kernels sometimes 

work together in a coordinated manner to achieve accurate predictions. Pruning based 

solely on the individual significance of each kernel may not lead to the optimal pruning 

results. Secondly, for new models, one-time pruning with structured pruning algorithms 

often struggles to maintain the same level of accuracy as the original model. Therefore, 

algorithm-level optimizations are needed to achieve better accuracy preservation. Addi-

tionally, conventional structured pruning algorithms require manual configuration of 

pruning thresholds and other hyperparameters, which limits the automation of the algo-

rithm. As a result, fully automated learning modes cannot be realized [68-71]. 

To sum up, structured pruning algorithms have significant advantages over unstruc-

tured pruning in terms of hardware acceleration and prediction accuracy. However, there 

are still challenges to address. For example, it is crucial to consider the relationships be-

tween convolutional kernels and optimize the algorithms at the algorithmic level to 

achieve better accuracy preservation. Additionally, the level of automation in the algo-

rithms needs to be further improved to facilitate a more convenient and efficient model 

pruning process. These are important directions in current research to further enhance the 

effectiveness of structured pruning algorithms. 

3. Network Architecture Design 

The design of lightweight network architectures aims to reduce model complexity 

and decrease computational resource consumption by optimizing the network architec-

ture [72-74]. The goal of this design is to create more efficient network structures that 

achieve model size compression, faster runtime, and reduced training difficulty. In the 

network architecture design, this paper discusses how to achieve model lightweight 

through two aspects: lightweight module design and convolutional structure optimiza-

tion. 

3.1 Lightweight module design 

The design of lightweight modules aims to reduce model complexity by creating 

compact and efficient network modules. These modules often employ specific structures 

and operations to minimize the number of parameters and computational requirements. 

Additionally, lightweight module design adopts a modular approach, breaking down the 

network into smaller modules and constructing the entire network by combining these 

modules. This modular design enhances the flexibility and scalability of the network. 
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3.1.1 Fire module 

The structure of the Fire module consists of two sub-layers: the squeeze layer and the 

expand layer. The squeeze layer utilizes a 1 1  convolutional kernel, while the expand 

layer employs both 1 1  and 3 3  convolutional kernels. Figure 7 illustrates the struc-

ture of the Fire module. 

 

Figure 7. Fire module schematic 

To reduce the number of network parameters, the Fire module utilizes the design of 

the squeeze and expand layers. In the expand layer, a 1 1  convolutional kernel is used 

instead of a 3 3  convolutional kernel to decrease the number of 3 3  convolutional 

kernels. Simultaneously, the squeeze layer employs a 1 1  convolutional kernel to limit 

the output channel count. This design strategy was applied in the classic SqueezeNet [75], 

where the Fire module serves as its core module. Compared to AlexNet [76], the 

SqueezeNet network constructed by stacking Fire modules reduces the number of param-

eters by 50 times while maintaining comparable accuracy. In addition to SqueezeNet, a 

novel neural network architecture called SqueezeNext is introduced in reference [77]. 

SqueezeNext combines the design principles of SqueezeNet and tensor decomposition. By 

decomposing the convolutional operation into an additive step followed by separable con-

volutional operations, SqueezeNext achieves a 3.2 times faster speed than SqueezeNet 

without sacrificing accuracy. Reference [78] presents an optimized SqueezeNet-based 

squeeze network model (OSQN-DNN) for unmanned aerial vehicle (UAV) aerial image 

classification. This model uses OSQN as the feature extractor and applies the Coyote Op-

timization Algorithm (COA) [79] to optimize the hyperparameter selection in the 

SqueezeNet model, significantly improving the overall classification performance. Exper-

imental results demonstrate that the OSQN-DNN model achieves better accuracy and 

runtime inference time compared to SqueezeNet on the benchmark UCM dataset.In ref-

erence [80], an enhanced version of the SqueezeNet convolutional neural network is in-

troduced. This improved model incorporates data preprocessing techniques such as data 

normalization and the Synthetic Minority Over-sampling Technique (SMOTE). Further-

more, the continuous wavelet transform is utilized to generate spectrograms, which are 

then employed for training and testing the modified SqueezeNet model. The results 

demonstrate that this enhanced SqueezeNet model achieves a remarkable accuracy of 90%. 

In reference [81], a novel approach combining the Aquila Sine Cosine Algorithm (ASCA) 

with the SqueezeNet model is presented. This integration aims to reduce both the training 

time and computational complexity of the detection process. By leveraging the ASCA 

technique, the weights of Deep Convolutional Neural Networks (DCNN) and SqueezeNet 
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are updated, resulting in improved efficiency. Experimental results demonstrate the su-

perior performance of this combined model. 

3.1.2 Ghost module 

This paper visualizes the process of neural networks extracting features from data, 

as shown in Figure 8. During the feature extraction process, many features are similar. 

These redundant feature maps increase the computational burden of the network, and 

removing them would significantly degrade the model's recognition performance. To ad-

dress this issue, Ghost provides a method to generate a large number of similar feature 

maps at a smaller computational cost. The core idea of the Ghost module is to generate 

multiple feature maps by sharing convolutional kernels, thereby reducing the number of 

parameters and computations. By leveraging inexpensive linear transformation opera-

tions (Cheap), the Ghost module can extract rich feature representations while maintain-

ing a smaller computational cost. This makes the Ghost module highly applicable in light-

weight network designs. 

 

Figure 8. Neural network visualization feature map.  

Let's analyze the principle behind Ghost in reducing computations from a theoretical 

perspective, as shown in Figure 9. Assuming an input feature map has a channel count of 

c we use m ordinary convolutional kernels size of  k k to generate m intermediate feature 
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maps. Each intermediate feature map is then transformed into s "ghost" feature maps 

through a series of linear operations (Cheap), combined with the identity mapping of the 

previous m intermediate feature maps, resulting in n output feature maps. In the Ghost 

module, the number of identity mappings is 
n

m
s

= , and the number of linear operations 

is ( )1m s − . Let's assume the kernel size for each linear operation is d d . Therefore, the 

number of parameters for identity mappings in the Ghost module is m c k k   , and the 

number of parameters for linear operations is ( )1s m d d−    . The magnitude of d d  

is similar to k k  ( k d ). Typically, the channel count of the input feature map c is much 

larger than the number of feature maps generated by linear operations s. On the other 

hand, the number of parameters for generating n output feature maps using ordinary con-

volution is n c k k   . 

 

Figure 9. Ghost Convolution Principle. 

Next, we further analyze the memory and computational benefits brought by using 

Ghost convolution through mathematical derivation, as shown in Equation (3). Through 

theoretical analysis, replacing ordinary convolution with Ghost convolution can reduce 

the number of convolutional parameters while obtaining the same number of feature 

maps, effectively reducing the model parameter count by approximately s-fold. 

 

( ) 1
1

c

n c k k s c
r s

n n s c
c k k s d d

s s

   
=  

+ −
   + −   

 (3) 

GhostNet [82] is a lightweight neural network based on the MobileNetV3 [83] archi-

tecture. It replaces ordinary convolutions in MobileNetV3 with Ghost modules, forming 

Ghost bottlenecks, and builds GhostNet upon this foundation. Experimental results have 

demonstrated that compared to other lightweight neural network architectures such as 

MobileNet series and ShuffleNet series, GhostNet achieves higher accuracy in ImageNet 

classification tasks while having comparable parameter and computational counts. In ref-

erence [84], researchers applied GhostNet to the backbone network of YoloV4, resulting 

in an improved network called Ghostnet-YoloV4. This enhanced network efficiently ex-

tracts features and significantly reduces the number of real-time counting operations. 

Through field testing in nursery plots, this method not only effectively overcomes noise 

interference in large field environments but also meets the computational requirements of 

low-configured management system embedded mobile devices. The counting and meas-

urement accuracy both exceed 92%. To further enhance the performance of lightweight 

image recognition models, reference [85] introduces L-GhostNet. This model integrates 
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group convolution learning and an improved Channel Attention (CA) method into Ghost-

Net. Experimental results show that compared to GhostNet, L-GhostNet achieves slightly 

higher accuracy across various datasets while reducing computational cost by over 44% 

and parameter count by over 33%. It also provides a 26% increase in frames per second 

(FPS). When compared to commonly used lightweight network models, such as Mo-

bileNets and ShuffleNets, operating at the same FLOP (Floating Point Operations) level, 

L-GhostNet demonstrates superior performance. L-GhostNet achieves the lowest FLOPs, 

highest accuracy, and fewer parameters, showcasing its exceptional overall performance. 

Furthermore, reference [86] proposes a CBAM-GhostNet-SSD network, which introduces 

Ghost modules and Efficient Channel Attention (ECA) mechanism to the SSD object de-

tection algorithm. By dynamically allocating parameters and changing the weights of de-

tection regions, this method improves the model's performance. To enhance the recogni-

tion accuracy of small objects, the CBAM module is also introduced. Compared to the 

original SSD network, the CBAM-GhostNet-SSD network reduces parameter and compu-

tational counts by 98.23% and achieves a 14.5% increase in mAP. 

3.2 Convolutional structure optimization 

Convolutional structure optimization aims to reduce computational resource con-

sumption by optimizing the convolutional layers. Common optimization methods in-

clude the use of lightweight convolutional operations such as depthwise separable con-

volution and grouped convolution. These lightweight convolutional operations maintain 

lower computational complexity while still preserving a certain level of prediction accu-

racy. 

3.2.1 Group convolution 

Grouped convolution first appeared in AlexNet and was designed to address limited 

hardware resources. It allows for parallel computation on two GPUs, with their results 

subsequently fused. Grouped convolution divides the input feature map into groups 

based on channels and applies convolutional operations to each group individually. The 

results of the grouped convolution are then concatenated along the channel dimension to 

obtain the final output feature map. This operation has a lightweight effect, reducing com-

putational complexity. 

Assuming that the input feature map is H W N  , the size of the convolution kernel 

is K K , and M  convolution kernels are used to perform the convolution operation, the 

output is H W M  . The computational amount of the standard convolution is 
K K M H W    . When the input feature channels are divided into G  groups in the 

grouped convolution, the calculation amount is 
1

G
 of the standard convolution. 

Therefore, grouped convolution reduces the computational burden by dividing the 

input feature channels into multiple groups. This is particularly useful in scenarios with 

limited hardware resources. However, it is important to note that grouped convolution 

also introduces some information loss since there is no direct interaction between channels 

within each group, resulting in inadequate fusion of information across feature maps [87-

89]. Therefore, when choosing the number of groups, a balance between computational 

efficiency and model performance needs to be considered. ShuffleNetV1 [90] proposed a 

channel shuffle method to address the limitation of information exchange between groups 

in grouped convolution. In order to maintain the recognition accuracy, a uniform and 

random shuffling is performed on the feature maps of grouped convolution, as shown in 

Figure 10. The purpose of this channel shuffle operation is to ensure that the input infor-

mation for the next grouped convolution comes from different groups. ShuffleNet 

achieved a 13-fold speed improvement compared to AlexNet while maintaining accuracy. 

However, ShuffleNetV2 [91] pointed out that evaluating model performance solely based 

on parameter count and floating-point operations (FLOPs) is inaccurate. Based on exper-

imental observations, the actual runtime of a model depends not only on computational 
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operations but also on factors such as memory read/write, GPU parallelism, and file I/O. 

Therefore, ShuffleNetV2 proposed four guidelines to improve model efficiency: (1) Use 

convolutions with the same number of input and output channels. This minimizes 

memory read/write and communication overhead. (2) Reduce the use of grouped convo-

lution. Although grouped convolution reduces computational burden, it also introduces 

information isolation. Therefore, ShuffleNetV2 suggests minimizing the use of grouped 

convolution to improve information exchange and overall performance. (3) Reduce net-

work branches. Branch operations in the network increase computational and communi-

cation overhead. (4) Minimize element-wise operations. 

 

Figure 10. Channel shuffle. 

ShuffleNetV2 is an improvement over ShuffleNetV1 based on the four guidelines 

mentioned earlier. Its structure is shown in Figure 11. In the residual branch of Shuf-

fleNetV2, a 1 1  convolution with the same number of input and output channels is in-

troduced to meet the requirement of guideline (1). Simultaneously, the use of grouped 

convolution is abandoned to comply with guideline (2). Finally, the feature addition op-

eration is replaced with the channel concatenation (Concat) operation, aligning with the 

guideline (4). These improvements not only enhance the runtime speed but also improve 

the accuracy. Experimental results show that ShuffleNetV2 achieves a 63% speed im-

provement compared to ShuffleNetV1. 

 

Figure 11. Comparison of ShuffleNetV1 and V2 structures. 
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In the latest research on ShuffleNet, a lightweight network called (2+1) D Distilled 

ShuffleNet is proposed in [92] for human action recognition using an unsupervised distil-

lation learning paradigm. This network extracts knowledge from the teacher network 

through distillation techniques without the need for labeled data. On the UCF86 and 

HMDB4 datasets, (2+1) D Distilled ShuffleNet achieves better accuracy and inference 

runtime than other state-of-the-art distilled networks. Furthermore, reference [93] pre-

sents a lightweight garbage classification model known as Garbage Classification Net-

work (GCNet), which builds upon ShuffleNetV2 with three notable enhancements: the 

incorporation of the Parallel Mixed Attention Mechanism (PMAM), utilization of a novel 

activation function, and the application of transfer learning. Experimental findings indi-

cate that GCNet achieves an outstanding average accuracy of 97.9% on a custom dataset, 

showcasing a significant improvement of nearly 10% compared to ShuffleNetV2, while 

maintaining a similar number of model parameters. Furthermore, in [94], a recognition of 

individuals (RE) network called ShuffleNet-Triplet is proposed for individual cow recog-

nition. This network utilizes ShuffleNetV2 for feature extraction to reduce the number of 

parameters and strengthen the network's ability to distinguish similar individuals by or-

ganically combining the triplet loss and cross-entropy loss. BNNeck is also introduced to 

reduce conflicts between the two loss functions. Experimental results show that Shuf-

fleNet-Triplet achieves a 6.88% improvement in average accuracy compared to the Shuf-

fleNetV2 model. 

3.2.2 Deep separable convolution 

Deep separable convolution is a convolutional operation that consists of two steps: 

depthwise convolution and pointwise convolution. This convolution operation effectively 

reduces computational complexity and model parameters. In the depthwise convolution 

step, each channel of the input features is convolved separately, as shown in Figure 12(a). 

The purpose of this step is to capture features while preserving their spatial information. 

Next, in the pointwise convolution step, the output of the depthwise convolution is con-

volved with a 1 1  convolutional kernel, as shown in Figure 12(b). The goal of pointwise 

convolution is to fuse information from different channels by convolving the set of output 

feature maps from the depthwise convolution with a 1 1  kernel. This process generates 

the final output feature map. 

 
(a) 

 
(b) 

Figure 12. Depth-separable convolution principle. (a) Depth-Wise convolution; (b) Point-Wise 

convolution. 
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Such a combination can make the model achieve the effect of lightweight, here we 

assume an input feature map height and width of H  and W , the number of channels is 

M , the output feature map height and width are unchanged, the number of channels is 
N . The number of standard convolution kernels is N , the size is K K M  . Then the 

standard convolution computation is K K M N H W     . The computation of the 

depth convolution in the depth-separable convolution is 1K K M H W     , and the 

computation of the point-by-point convolution is 1 1 M N H W     . The ratio rC  ob-

tained by comparing the total computation of the depth-separable convolution with that 

of the standard convolution is shown in in Equation (4): 

2

1 1 1 1 1
 r

K K M H W M N H W
C

K K M N H W N K

     +     
= = +

    
            (4) 

This ratio Cr can be used to measure the extent of computational reduction achieved 

by using deep separable convolution compared to standard convolution. Similarly, the 

ratio of parameter count between deep separable convolution and standard convolution 

is 2

1 1

N K
+ . In Equation (4), the size of the convolutional kernel is usually 3 3 , and the 

computational complexity and parameter count of deep separable convolution are ap-

proximately 
1

9
 to 

1

8
 of standard convolution. 

The MobileNet series is a collection of lightweight network models based on deep 

separable convolution. These models aim to reduce computational complexity and pa-

rameter count while maintaining good performance, particularly in tasks such as image 

classification. MobileNetV1 [95] was the first model in this series, which replaced tradi-

tional convolutional operations with deep separable convolution, resulting in a significant 

reduction in computational complexity and parameter count. In the ImageNet classifica-

tion task, MobileNetV1 achieved comparable performance to traditional network models 

such as GoogleNet and VGG-16 while reducing the model parameters by nearly 30 times. 

MobileNetV2 [96] further improved upon MobileNetV1 by introducing linear bottleneck 

structures and inverted residual blocks. The linear bottleneck structure combines depth-

wise convolution and pointwise convolution, enhancing both speed and accuracy. The 

inverted residual structure improves information flow and feature propagation. Mo-

bileNetV3 incorporates neural architecture search (NAS) to automatically obtain optimal 

network parameters and introduces the SE attention mechanism to enhance feature inter-

action between channels. This architecture demonstrated better performance than Mo-

bileNetV1 and MobileNetV2 in the ImageNet classification task. The latest research on the 

MobileNet series includes Mobile-Former [97], which combines MobileNet with the 

Transformer architecture to create a lightweight framework. By leveraging the advantages 

of MobileNet in local processing and Transformer in global interaction through a bidirec-

tional bridge connection, this structure achieves bidirectional fusion of local and global 

features. In the ImageNet classification task, it achieved a 3.3% improvement in accuracy 

compared to MobileNetV1 while reducing computational complexity by 17%. A-Mo-

bileNet [98] introduces attention modules and parameter optimizations to the Mo-

bileNetV1 model, demonstrating better performance on FERPlus and RAF-DB datasets 

compared to other models. Additionally, BM-Net [99] is a lightweight network composed 

of a bilinear structure and MobileNet-V3, specifically designed for analyzing breast cancer 

whole-slide images (WSI). Experimental results show its significant potential in breast 

cancer WSI detection. 

3.3 Analysis and discussion 

From the performance comparison of various lightweight networks summarized be-

low (Table 1), it can be seen that GhostNet exhibits the best overall performance among 
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these lightweight neural networks. It achieves the highest accuracy while maintaining rel-

atively low computational complexity. The SqueezeNet series has higher computational 

complexity, poor scalability, and relatively lower recognition accuracy, but it has a smaller 

parameter count. The ShuffleNet series has lower computational complexity and utilizes 

channel shuffling operations to better leverage the information from each channel, thereby 

improving network accuracy. The MobileNet series, although not as impressive as other 

lightweight neural networks in experimental data, has widely applied the concept of deep 

separable convolution in many large-scale networks that require lightweight designs [100-

102]. Each classic lightweight network model has its unique advantages, and there is cur-

rently no single network that can perfectly balance speed and accuracy. This provides us 

with a direction for future research, which is to explore better lightweight network models 

that achieve a better balance between speed and accuracy [103-105]. 

Table 1. Comparison table of four lightweight network model families. 

Model FLOPs/M Params/M Accuracy/% DataSets 

SqueezeNet[75] 837 1.20 
Top-1:57.5 

Top-5:80.3 
ImageNet 

SqueezeNext[77] 228 0.74 
Top-1:58.58 

Top-5:82.09 
ImageNet 

GhostNet[82] 141 5.2 
Top-1:73.9 

Top-5:91.4 
ImageNet 

ShuffleNetV1(g=3)[90] 140 2.4 Top-1:67.4 ImageNet 

ShuffleNetV2[91] 142 - Top-1:69.4 ImageNet 

MobileNetV1[95] 569 4.2 Top-1:70.6 ImageNet 

MobileNetV2[96] 300 3.4 Top-1:72.0 ImageNet 

MobileNetV3[83] 219 5.4 Top-1:73.8 ImageNet 

Movements and performance of these four classic network models in recent years. 

However, it can be observed that these papers mainly focus on applications in different 

domains, with less emphasis on innovative network structure design or lightweight mod-

ule improvements. From the "Improvements" column in Table 2, it can be seen that some 

papers attempt to improve accuracy by introducing different attention mechanisms. How-

ever, this often increases the complexity of the network model, making it challenging to 

achieve lightweight goals. Other papers replace the backbone network of large models 

with these four classic lightweight networks to achieve lightweight models, but this often 

significantly reduces the recognition accuracy of the models. 

However, only a few papers [106-121] have conducted further optimization research 

based on lightweight network architectures. For example, in the MicroNet model pro-

posed in [121], the concept of microfactorized convolution is introduced. This method de-

composes the convolution matrix into low-rank matrices to integrate sparse connections 

into the convolution, resulting in significant performance improvements at low FLOP 

states, surpassing existing techniques. Therefore, to promote the development of light-

weight network computations, our research direction should focus more on innovative 

network structures and improvements in lightweight modules. Such efforts will reduce 

the complexity of models while maintaining good performance, and further drive the ad-

vancement of lightweight network computations. 

Table 2. Improvement and performance of the latest lightweight networks. 

Models Improvements Performance 

Modified 

SqueezeNet[122] 

Improved SqueezeNet architecture by reducing 

the number of Fire modules and increasing the 

number of pooling layers 

Improved precision by 28% and recall by 20% 

compared to the original model SqueezeNet 
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OSQN-DNN[78] 

1) use the Coyote Optimization Algorithm (COA) to 

optimize the hyperparameters involved in the 

SqueezeNet model. 

2) using DNN models as classifiers to assign ap-

propriate class labels. 

Compared to the existing high caliber DLPSO al-

gorithm, the accuracy is 1% higher and the 

runtime is reduced by 0.13s. 

ASCA-SqueezeNet[81] 
The weights of SqueezeNet are updated using 

the Aquila Sine Cosine Algorithm (ASCA). 

Compared with SqueezeNet, the test accuracy is 

improved by 6.2% and the computation time is 

reduced by 1s. 

CBAM-GhostNet-

SSD[86] 

1) Introduce the Ghost module into the SSD network 

and add the ECA attention mechanism. 

2) Add CBAM module to the network. 

Compared to Ghost-SSD, mAP is up 1% and FPS 

is up 3 frames/s. 

GhostNet-YOLOv4[84] 

1) replace the backbone network of YOLOv4 with 

GhostNet. 

2) replacing the normal convolutional blocks of 

PANet in YOLOv4 with depth-separable convo-

lutional blocks. 

Nearly 4% improvement in mAP for identifying 

nursery saplings. 

L-GhostNet[85] 

1) Improved the Ghost module in GhostNet. 

2) Introduced improved CA attention mechanism 

(p-CA) 

Compared to the original model GhostNet, it re-

duces the amount of computation by 44% and the 

number of parameters by 33%, and improves the 

FPS by 26%. 

D Distilled Shuf-

fleNet[90] 

1) distill learning using ShuffleNet as a student net-

work. 

2) knowledge extraction from two teacher net-

works. 

Compared to the ResNet-18 backbone, the accu-

racy is improved by 0.7% on the UCF01 dataset, 

the amount of parameters is reduced by almost 

30%, and the amount of computation is reduced 

by almost 60%. 

GCNet[93] 

1) Added CBAM attention mechanism. 

2) replaced the Relu activation function with FRelu. 

3) Used transfer learning. 

Compared with the original model ShuffleNetV2, 

the accuracy is improved by 4.5%, and the num-

ber of parameters and computation are reduced 

by nearly 8%. 

ShuffleNet-Triplet[94] 

The triple loss function and the cross-entropy 

loss are calculated separately using the BNNeck 

structure, and then the two are combined. 

Nearly 3% improvement in recognition of indi-

vidual cows compared to the original model 

ShuffleNetV2. 

Mobile-Former[97] 
Enabling two-way cross-talk combines Mo-

bileNet and Transform. 

The accuracy is 1.3% higher than MobileNetV3 

and the computation is reduced by 17.4%. 

A-MobileNet[98] 

1) Introduce CBAM attention mechanism in Mo-

bileNetV1. 

2) Combine center loss and softmax loss to opti-

mize model parameters. 

Accuracy is about 3% higher than MobileNetV1 

on the RAF-DB dataset. 

BM-Net[99] 
Replaced MobileNetV3's classifier with a bilinear 

structure. 

On the BACH-challenged Part B WSI segmenta-

tion dataset, the average accuracy is improved by 

1% compared to MobileNetV3. 

4. Challenges and Prospects 

Currently, intelligent mobile devices are moving in the direction of edge computing 

and lightweight development. A key research focus at present is how to minimize model 

latency and storage space while maintaining neural network model accuracy to the great-

est extent possible. 

Most existing methods in model pruning algorithms eliminate redundant connec-

tions or neurons in the network. However, these low-level pruning methods pose non-

structural risks. Irregular memory access patterns during computer operations can also 

impede further acceleration of the network [123-125]. In contrast, structurally pruned net-
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works have smaller model sizes, faster execution speeds, and reduced storage space re-

quirements, making them more suitable for deployment on computationally limited mo-

bile devices. Among them, convolutional kernel pruning is one of the hot research topics 

in structured pruning. Most convolutional kernel pruning algorithms typically involve 

three classic steps: pre-training, pruning, and fine-tuning. However, in [126], various al-

gorithmic evaluations were conducted on multiple network structures, revealing that 

training small target models from random initialization can achieve identical or even bet-

ter model performance than classical three-step pruning algorithms. Additionally, train-

ing models from scratch can also achieve equivalent or better performance than fine-tun-

ing models. This indicates that in pruning algorithms, it is more important to find suitable 

network structures rather than considering how to preserve important weights within ex-

isting structures. Furthermore, most current convolutional kernel pruning algorithms 

only prune in a single dimension such as depth, width, or resolution, which may lead to 

excessive loss in a particular dimension and reduce accuracy, while the compression rate 

of the model may not be significantly high. Exploring pruning from multiple dimensions 

could potentially yield better results, and this is an avenue worth investigating in the fu-

ture [127]. Therefore, future research should focus on designing appropriate network ar-

chitectures and exploring multidimensional pruning methods that prioritize achieving 

high efficiency pruning algorithms while maintaining model accuracy. This will facilitate 

the deployment of lightweight neural network models on computationally limited mobile 

devices. 

However, there are still some challenges in pruning algorithms. For example, the 

evaluation systems and metrics used to assess the importance of weights and the perfor-

mance of pruning algorithms are often oversimplified. Therefore, it is crucial to propose 

effective methods for measuring the impact of pruning on models, which remains a chal-

lenge in model pruning algorithms. Researching these challenges in pruning methods and 

proposing algorithms with superior performance holds great potential for development. 

Additionally, exploring algorithms that do not rely on manually designed hyperparame-

ters is a promising direction. Currently, research in this area is relatively limited but holds 

significant importance for the advancement of pruning algorithms. 

Significant progress has been made in network architecture design, primarily focus-

ing on designing lighter modules and optimizing convolutional structures. Currently, 

there are two main approaches to designing lightweight models: (1) Improving existing 

lightweight modules based on specific requirements. (2) Designing traditional modules 

that meet the desired criteria and then replacing the convolutions in these modules with 

lightweight convolutions, adjusting the structural relationships between modules using 

existing lightweight functional structures or tools such as activation functions. Most light-

weight networks adopt the first approach, which has achieved noticeable results in terms 

of model lightweighting. However, this approach has reached a plateau in terms of the 

degree of model lightweighting, making it difficult to achieve further breakthroughs. In 

contrast, the second approach is more challenging because it heavily relies on the design-

er's expertise and prior knowledge of deep learning. Designers need to possess a wealth 

of prior knowledge, such as how to design structures that resemble sparsely connected 

connections between human neurons in principle, and how to control the influence of 

prior knowledge while improving performance metrics like latency, computation speed, 

and storage space by altering the network structure. 

Currently, reinforcement learning-based neural network architecture search is the 

mainstream approach for network architecture design. This method uses a reinforcement 

learning controller to search and generate network structures within the search space, 

eliminating the need for extensive manual effort. This is a key reason for its rapid devel-

opment. However, reinforcement learning-based neural network architecture search 

methods tend to focus too much on improving model accuracy while neglecting the limi-

tations of underlying hardware devices. The resulting models often have high hardware 
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requirements and are challenging to deploy on embedded devices. Therefore, lightweight 

network architecture design still faces some challenges. Future research directions include 

finding a balance between model accuracy and hardware requirements and considering 

the limitations of underlying hardware devices during the design process. It is essential 

to develop methods that can optimize both the performance of the model and its compat-

ibility with resource-constrained devices. 

Indeed, whether it is model pruning or network architecture design, the goal is not 

only to reduce the complexity of convolutional neural networks but also to maintain or 

even improve the original accuracy. With the rapid development of deep learning, emerg-

ing technologies such as Graph Neural Networks (GNNs) [128-130], and the integration 

of neural networks with Transformers (e.g., Vision Transformers or ViTs) [131-133], have 

gradually matured and gained recognition in the academic community. However, how to 

lightweight these models and apply them to real-world industrial applications while en-

suring post-application security is a significant challenge for model compression and ac-

celeration techniques [134,135]. 

5. Conclusion 

This paper summarizes the methods of model pruning and network architecture de-

sign in lightweight neural networks. Regarding model pruning methods, a comparison 

and analysis of structured pruning and unstructured pruning algorithms are presented, 

highlighting their characteristics. Generally, unstructured pruning exhibits irregularity 

and requires specific hardware to leverage its advantages, while structured pruning offers 

more pruning options and is more easily applicable to general-purpose hardware. Cur-

rently, structured pruning algorithms are commonly used. In terms of network architec-

ture design, this paper provides an overview of four lightweight neural networks: 

SqueezeNet, GhostNet, ShuffleNet, and MobileNet. The mathematical principles behind 

their ability to achieve model lightweight are explained, and their performance on the 

ImageNet dataset is compared and analyzed. Based on existing work, it can be observed 

that for model pruning, there is a need to establish a comprehensive evaluation metric 

system to measure algorithm performance effectively. Regarding network architecture 

design, further exploration is required to develop methods that can accelerate computa-

tion speed and reduce storage space while maintaining the accuracy of the original model 

as much as possible. 
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