Modification and Screening of Antibiotic-producing Strains

https://doi.org/10.61187/ita.v2i2.130

Authors

  • Bohan Sun Science and Technology Development Exchange Center, Science and Technology Bureau of Ili Kazak Au-tonomous Prefecture, Yining 835000, China

Keywords:

Antibiotics, Strain modification, Strain screening

Abstract

Antibiotics play an important role in the field of medicine and healthcare, and with increasing usage, there is an urgent need to improve the quality and yield of antibiotic products to achieve cost reduction and efficiency. This has forced scientists to modify and screen antibiotic-producing strains to improve the yield and quality of antibiotic products. This paper briefly describes the strain modification methods as well as strain screening methods, discusses the limitations of each method, and looks forward to the development trend of strain modification and screening.

Downloads

Download data is not yet available.

References

Waksman, S. A. What is an antibiotic or an antibiotic substance? Mycologia, 1947. 39, 565-569. DOI: https://doi.org/10.1080/00275514.1947.12017635

Baltz, R. Antibiotic discovery from actinomycetes: Will a renaissance follow the decline and fall? SIM News, 2005. 55, 186-196.

Bérdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J Antibiot (Tokyo), 2012. 65, 85-95. https://doi.org/10.1038/ja.2012.27 DOI: https://doi.org/10.1038/ja.2012.27

Armstrong, G. L., Conn, L. A., Pinner, R. W. Trends in infectious disease mortality in the united states during the 20th century. Jama, 1999. 281, 61-66. https://doi.org/10.1001/jama.281.1.61 DOI: https://doi.org/10.1001/jama.281.1.61

Hong, P. Y., Al-Jassim, N., Ansari, M. I., et al. Environmental and public health implications of water reuse: Antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes. Antibiotics (Basel), 2013. 2, 367-399. https://doi.org/10.3390/antibiotics2030367 DOI: https://doi.org/10.3390/antibiotics2030367

You, Y., Silbergeld, E. K. Learning from agriculture: Understanding low-dose antimicrobials as drivers of resistome expansion. Front Microbiol, 2014. 5, 284. https://doi.org/10.3389/fmicb.2014.00284 DOI: https://doi.org/10.3389/fmicb.2014.00284

Gao, S., Qi, X., Hart, D. J., et al. Expression and characterization of levansucrase from clostridium acetobutylicum. J Agric Food Chem, 2017. 65, 867-871. https://doi.org/10.1021/acs.jafc.6b05165 DOI: https://doi.org/10.1021/acs.jafc.6b05165

Gérando, H. M., Fayolle-Guichard, F., Rudant, L., et al. Improving isopropanol tolerance and production of clostridium beijerinckii dsm 6423 by random mutagenesis and genome shuffling. Appl Microbiol Biotechnol, 2016. 100, 5427-5436. https://doi.org/10.1007/s00253-016-7302-5 DOI: https://doi.org/10.1007/s00253-016-7302-5

Yun, J., Yang, M., Magocha, T. A., et al. Production of 1,3-propanediol using a novel 1,3-propanediol dehydrogenase from isolated clostridium butyricum and cobiotransformation of whole cells. Bioresource Technology, 2018. 24, 838-843. https://doi.org/10.1016/j.biortech.2017.09.180 DOI: https://doi.org/10.1016/j.biortech.2017.09.180

Qi, X., Zhang, H., Magocha, T. A., et al. Improved xylitol production by expressing a novel d-arabitol dehydrogenase from isolated gluconobacter sp. Jx-05 and cobiotransformation of whole cells. Bioresour Technol, 2017. 23, 50-58. https://doi.org/10.1016/j.biortech.2017.03.107 DOI: https://doi.org/10.1016/j.biortech.2017.03.107

Cheigh, C. I., Park, H., Choi, H. J., et al. Enhanced nisin production by increasing genes involved in nisin z biosynthesis in lactococcus lactis subsp. Lactis a164. Biotechnol Lett, 2005. 27, 155-160. https://doi.org/10.1007/s10529-004-7661-3 DOI: https://doi.org/10.1007/s10529-004-7661-3

Biot-Pelletier, D., Martin, V. J. Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol, 2014. 98, 3877-3887. https://doi.org/10.1007/s00253-014-5616-8 DOI: https://doi.org/10.1007/s00253-014-5616-8

Chen, F., Zhu, X., Xu, S. Study on liquid fermentation of aspergillus niger a3 producing xylanase. Journal of Harbin University of Commerce (Natural Sciences Edition), 2009. 25, 47-50. https://doi.org/10.19492/j.cnki.1672-0946.2009.01.012

Zhang, W., Shang, K., Hu, Y., et al. Construction of an epidaunorubicin engineering producer and its protoplast mutagenesis by uv irradiation. Chinese Journal of Pharmaceuticals, 2009. 40, 20-23. https://doi.org/10.3969/j.issn.1001-8255.2009.01.008

Peng, Y., Lv, F., He, Y., et al. Aspergillus of high phytase activity filtrated by laser radiation mutagenesis. Act a laser Biology Sinica, 2002. 6, 434-437. https://doi.org/10.3969/j.issn.1007-7146.2002.06.008

Zhang, Y., Ye, R., Yu, W., et al. The effect of mutagenesis by he-ne laser in streptomyces ambof aciens and its mathematic analysis. Chinese Journal of Antibiotics, 2007. 7, 146-149+186. https://doi.org/10.3969/j.issn.1001-8689.2007.03.003

Liang, X., Chen, M., Zhang, H., et al. 60co γ-irradiation mutation induction for screening of avilamycin strains with high productivity and its culture medium optimization. Journal of Nuclear Agricultural Sciences, 2007. 21, 451-455. https://doi.org/10.3969/j.issn.1000-8551.2007.05.006

Chen, L., Jiang, S., Wan, L. Study on synchrotron radiation soft X-ray mutagenesis and fermentation kinetics of kojic acid producing bacteria. Journal of Radiation Research and Radiation Processing, 2006. 24, 308-312. https://doi.org/10.3969/j.issn.1000-3436.2006.05.011

Hu, Y., JIang, S., Luo, S., et al. 60co-γirradiation mutation and screening of heat-resistant rhizopus oryzae mutant producing l-lactic acid. Food Science, 2008. 29, 452-456. https://doi.org/10.3321/j.issn:1002-6630.2008.12.102

Mao, X., Xiao, B., Liu, Y., et al. Studies on mutagenesis of thermomonospora fusca with 60co―γ-rays. Journal of Cellulose Science and Technology, 2006. 18, 31-34. https://doi.org/10.16561/j.cnki.xws.2006.01.007

Yu, Z., Shao, C. Dose-effect of the tyrosine sample implanted by a low energy n+ ion beam. Radiation Physics and Chemistry, 1994. 43, 349-351. https://doi.org/10.1016/0969-806X(94)90025-6 DOI: https://doi.org/10.1016/0969-806X(94)90025-6

Hou, H., Du, W. Screening of high-yield cellulase strain by microwave mutageenesis. China Brewing, 2008. 2, 44-46. https://doi.org/CNKI:SUN:ZNGZ.0.2008-24-019

Han, W., Zhu, C. Study on the mutagenesis effect of microwave on phaffia rubra. Food and Fermentation Industeies, 2009. 35, 47-50. https://doi.org/CNKI:SUN:SPFX.0.2009-04-017

Pan, L., Yang, D., Huang, S., et al. Screening of oleaginous yeast by utilizing xylose by microwave irradiation mutation. China Brewing, 2009. 6, 62-64. https://doi.org/10.3969/j.issn.0254-5071.2009.03.019

Yuan, Z., Zhang, B., Ma, Q., et al. Mutation breeding of yeast with high pressure technology for whole wheat beer and its application. China Brewing, 2010. 2, 33-37. https://doi.org/10.3969/j.issn.0254-5071.2010.12.010

Zhu, H., Xu, J., Shi, J., et al. Mutation breeding for productive yeast strains through a novel method: High-energy-pulse-electron-beam. Annals of Microbiology, 2008. 58, 549-553. https://doi.org/10.1007/BF03175556 DOI: https://doi.org/10.1007/BF03175556

Li, J. Study on breeding of prolific micromonospora carbonacea in antibiotics production. Jiang Xi, Jiangxi Normal University, (2014).

Wan, Y., Han, H., Li, L., et al. Effect of low-frequency magnetic feld on gamma-aminobutyric acid produced by monascus purpureus in solid-state fermentation. Journal of Agricultural Science and Technology, 2015. 17, 94-98. https://doi.org/10.13304/j.nykjdb.2015.478

Li, K., Wang, Y., Wan, T. Screening of high-yield lovstatin monascus by nitrogen ion beam mutation breeding. Food and Fermentation Industeies, 2016. 42, 98-101. https://doi.org/10.13995/j.cnki.11-1802/ts.201604018

Cranfield, C. G., Dawe, A. S., Karloukovski, V., et al. Biogenic magnetite in the nematode caenorhabditis elegans. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2004. 271, 436 - 439. https://doi.org/10.1098/rsbl.2004.0209 DOI: https://doi.org/10.1098/rsbl.2004.0209

Cheng, M., Cui, C., Li, C. Chemical mutation technique applied in microorganism breeding. Journal of International Phar-maceutical Research, 2009. 36, 412-417. https://doi.org/CNKI:SUN:GWYZ.0.2009-06-004

Ahloowalia, B. S., Maluszynski, M., Nichterlein, K. Global impact of mutation-derived varieties. Euphytica, 2004. 135, 187-204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f DOI: https://doi.org/10.1023/B:EUPH.0000014914.85465.4f

Greene, E. A., Codomo, C. A., Taylor, N. E., et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in arabidopsis. Genetics, 2003. 164, 731-740. https://doi.org/10.1093/genetics/164.2.731 DOI: https://doi.org/10.1093/genetics/164.2.731

Zhang, X., Xue, D., Zhou, W., et al. Screening and identification of the mutants from two-row barley cultivar zju3 induced by ethyl methane sulfonate(ems). Journal of Zhejiang University, 2011. 37, 169-174. https://doi.org/10.3785/j.issn.1008-9209.2011.02.008

Yuan, M., Liu, Z. Development and application of tilling technology. Crop Research, 2006. 2, 582-585+588. https://doi.org/10.16848/j.cnki.issn.1001-5280.2006.05.048

Cheng, S. Mutagenesis breeding experiment of chromogenic bacterium t_(17-2-39). Jiangsu Food Fermentation, 2000. 1, 9-12. https://doi.org/CNKI:SUN:SPFG.0.2000-02-002

Chen, X., Wu, Z., Zhao, J. Breeding technology of d-ribose high-producing bacillus strain with chemical mutation. Journal of Microbiology, 2005. 25, 107-109. https://doi.org/10.3969/j.issn.1005-7021.2005.02.026

Gu, z., Chen, W., Cheng, H. Improvement of antifungal activity of bacillus subtilis g3 by mutagenesis with acridine orange. Acta Phytopathologica Sinica, 2008. 38, 185-191. https://doi.org/10.13926/j.cnki.apps.2008.02.007

Zhang, L., Di, j., Quan, x., et al. Breeding of high trehalose producing mutants of saccharomyces cerevisae. Biotechnology, 2005. 15, 31-33. https://doi.org/10.16519/j.cnki.1004-311x.2005.01.014

Li, F., Liu, C., Zheng, Y., et al. Breeding of strain clostridium butyricum producing1,3-propanediol. Biotechnology, 2005. 15, 34-35. https://doi.org/10.16519/j.cnki.1004-311x.2005.01.015

Fisk, A. T., Tomy, G. T., Muir, D. C. G., et al. Toxicity of c10-, c11-, c12-, and c14-polychlorinated alkanes to japanese medaka (oryzias latipes) embryos. Environmental Toxicology, 2010. 18, 2894-2902. https://doi.org/10.1002/etc.5620181234 DOI: https://doi.org/10.1897/1551-5028(1999)018<2894:TOCCCA>2.3.CO;2

Reeves, A. R., English, R. S., Lampel, J. S., et al. Transcriptional organization of the erythromycin biosynthesis-related gene cluster of saccharopolyspora erythraea. Journal of Bacteriology, 1999. 181, 7098 - 7106. https://doi.org/10.1128/JB.181.22.7098-7106.1999 DOI: https://doi.org/10.1128/JB.181.22.7098-7106.1999

Zheng, L., Yan, X., Han, X., et al. Identification of norharman as the cytotoxic compound produced by the sponge (hymeni-acidon perleve)-associated marine bacterium pseudoalteromonas piscicida and its apoptotic effect on cancer cells. Biotechnol Appl Biochem, 2006. 44, 135-142. https://doi.org/10.1042/ba20050176 DOI: https://doi.org/10.1042/BA20050176

Zhou, Z., Zhang, A., Zhou, L., et al. Cloning and expression of penicillin g acylase gene from providencia rettgeri in escherichia coli. Industrial Microbiology, 2002. 1, 1-5. https://doi.org/10.3969/j.issn.1001-6678.2002.03.001

Wu, J., Zhang, Q., Deng, W., et al. Toward improvement of erythromycin a production in an industrial saccharopolyspora erythraea strain via facilitation of genetic manipulation with an artificial attb site for specific recombination. Appl Environ Microbiol, 2011. 77, 7508-7516. https://doi.org/10.1128/aem.06034-11 DOI: https://doi.org/10.1128/AEM.06034-11

Chen, Y., Deng, W., Wu, J., et al. Genetic modulation of the overexpression of tailoring genes eryk and eryg leading to the improvement of erythromycin a purity and production in saccharopolyspora erythraea fermentation. Appl Environ Microbiol, 2008. 74, 1820-1828. https://doi.org/10.1128/aem.02770-07 DOI: https://doi.org/10.1128/AEM.02770-07

Leja, K., Myszka, K., Czaczyk, K. Genome shuffling: A method to improve biotechnological processes. Journal of Biotech-nology, 2011. 92, 345-351. https://doi.org/10.5114/bta.2011.46551 DOI: https://doi.org/10.5114/bta.2011.46551

Gong, J., Zheng, H., Wu, Z., et al. Genome shuffling: Progress and applications for phenotype improvement. Biotechnol Adv, 2009. 27, 996-1005. https://doi.org/10.1016/j.biotechadv.2009.05.016 DOI: https://doi.org/10.1016/j.biotechadv.2009.05.016

Patnaik, R., Louie, S., Gavrilovic, V., et al. Genome shuffling of lactobacillus for improved acid tolerance. Nat Biotechnol, 2002. 20, 707-712. https://doi.org/10.1038/nbt0702-707 DOI: https://doi.org/10.1038/nbt0702-707

Zhang, Y. X., Perry, K., Vinci, V. A., et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002. 415, 644-646. https://doi.org/10.1038/415644a DOI: https://doi.org/10.1038/415644a

Zhang, Y. F., Liu, S. Y., Du, Y. H., et al. Genome shuffling of lactococcus lactis subspecies lactis yf11 for improving nisin z production and comparative analysis. J Dairy Sci, 2014. 97, 2528-2541. https://doi.org/10.3168/jds.2013-7238 DOI: https://doi.org/10.3168/jds.2013-7238

Zhao, J., Zhang, C., Lu, J., et al. Enhancement of fengycin production in bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using rt-pcr. Can J Microbiol, 2016. 62, 431-436. https://doi.org/10.1139/cjm-2015-0734 DOI: https://doi.org/10.1139/cjm-2015-0734

Zhao, M., Dai, C., Guan, X., et al. Genome shuffling amplifies the carbon source spectrum and improves arachidonic acid production in diasporangium sp. Enzyme Microbial Technology, 2009. 45, 419-425. https://doi.org/10.1016/j.enzmictec.2009.08.012 DOI: https://doi.org/10.1016/j.enzmictec.2009.08.012

Yin, H., Ma, Y., Deng, Y., et al. Genome shuffling of saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction. J Microbiol Methods, 2016. 127, 188-192. https://doi.org/10.1016/j.mimet.2016.06.012 DOI: https://doi.org/10.1016/j.mimet.2016.06.012

Zhang, Y., Liu, J. Z., Huang, J. S., et al. Genome shuffling of propionibacterium shermanii for improving vitamin b12 pro-duction and comparative proteome analysis. Journal of Biotechnology, 2010. 148, 139-143. https://doi.org/10.1016/j.jbiotec.2010.05.008 DOI: https://doi.org/10.1016/j.jbiotec.2010.05.008

Wang, Y., Li, Y., Pei, X., et al. Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in lacto-bacillus rhamnosus. Journal of Biotechnology, 2007. 129, 510-515. https://doi.org/10.1016/j.jbiotec.2007.01.011 DOI: https://doi.org/10.1016/j.jbiotec.2007.01.011

Hou, L. Improved production of ethanol by novel genome shuffling in saccharomyces cerevisiae. Appl Biochem Biotechnol, 2010. 160, 1084-1093. https://doi.org/10.1007/s12010-009-8552-9 DOI: https://doi.org/10.1007/s12010-009-8552-9

Ochi, K. From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem, 2007. 71, 1373-1386. https://doi.org/10.1271/bbb.70007 DOI: https://doi.org/10.1271/bbb.70007

Gaj, T., Sirk, S. J., Shui, S. L., et al. Genome-editing technologies: Principles and applications. Cold Spring Harb Perspect Biol, 2016. 8, 169-189. https://doi.org/10.1101/cshperspect.a023754 DOI: https://doi.org/10.1101/cshperspect.a023754

Zakaria, N. D., Hamzah, H. H., Salih, I. L., et al. A review of detection methods for vancomycin-resistant enterococci (vre) genes: From conventional approaches to potentially electrochemical DNA biosensors. Biosensors (Basel), 2023. 13, 294. https://doi.org/10.3390/bios13020294 DOI: https://doi.org/10.3390/bios13020294

He, Y., Sun, Y., Liu, T., et al. Cloning of separate meilingmycin biosynthesis gene clusters by use of acyltransfer-ase-ketoreductase didomain pcr amplification. Appl Environ Microbiol, 2010. 76, 3283-3292. https://doi.org/10.1128/aem.02262-09 DOI: https://doi.org/10.1128/AEM.02262-09

Zhang, W., Li, Z., Miao, X., et al. The screening of antimicrobial bacteria with diverse novel nonribosomal peptide synthetase (nrps) genes from south China sea sponges. Mar Biotechnol (NY), 2009. 11, 346-355. https://doi.org/10.1007/s10126-008-9148-z DOI: https://doi.org/10.1007/s10126-008-9148-z

Nishioka, K., Miyazaki, H., Soejima, H. Unbiased shrna screening, using a combination of facs and high-throughput se-quencing, enables identification of novel modifiers of polycomb silencing. Sci Rep, 2018. 8, 12128. https://doi.org/10.1038/s41598-018-30649-6 DOI: https://doi.org/10.1038/s41598-018-30649-6

Dörr, M., Fibinger, M. P., Last, D., et al. Fully automatized high-throughput enzyme library screening using a robotic platform. Biotechnol Bioeng, 2016. 113, 1421-1432. https://doi.org/10.1002/bit.25925 DOI: https://doi.org/10.1002/bit.25925

Zhou, S., Alper, H. S. Strategies for directed and adapted evolution as part of microbial strain engineering. Journal of Chemical Technology Biotechnology, 2018. 9, 366-376. https://doi.org/10.1002/JCTB.5746 DOI: https://doi.org/10.1002/jctb.5746

Klann, T. S., Black, J. B., Chellappan, M., et al. Crispr-cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol, 2017. 35, 561-568. https://doi.org/10.1038/nbt.3853 DOI: https://doi.org/10.1038/nbt.3853

Lee, S. H., Cunha, D., Piermarocchi, C., et al. High-throughput screening and bioinformatic analysis to ascertain compounds that prevent saturated fatty acid-induced β-cell apoptosis. Biochem Pharmacol, 2017. 138, 140-149. https://doi.org/10.1016/j.bcp.2017.05.007 DOI: https://doi.org/10.1016/j.bcp.2017.05.007

Longwell, C. K., Labanieh, L., Cochran, J. R. High-throughput screening technologies for enzyme engineering. Curr Opin Biotechnol, 2017. 4, 196-202. https://doi.org/10.1016/j.copbio.2017.05.012 DOI: https://doi.org/10.1016/j.copbio.2017.05.012

Cao, X., Luo, Z., Zeng, W., et al. Enhanced avermectin production by streptomyces avermitilis atcc 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Appl Microbiol Biotechnol, 2018. 102, 703-712. https://doi.org/10.1007/s00253-017-8658-x DOI: https://doi.org/10.1007/s00253-017-8658-x

Zhang, K., Mohsin, A., Dai, Y., et al. Combinatorial effect of artp mutagenesis and ribosome engineering on an industrial strain of streptomyces albus s12 for enhanced biosynthesis of salinomycin. Front Bioeng Biotechnol, 2019. 7, 212. https://doi.org/10.3389/fbioe.2019.00212 DOI: https://doi.org/10.3389/fbioe.2019.00212

Ren, F., Chen, L., Tong, Q. Highly improved acarbose production of actinomyces through the combination of artp and pen-icillin susceptible mutant screening. World J Microbiol Biotechnol, 2017. 33, 16. https://doi.org/10.1007/s11274-016-2156-7 DOI: https://doi.org/10.1007/s11274-016-2156-7

Song, X., Zhang, Y., Zhu, X., et al. Mutation breeding of high avermectin b1a-producing strain by the combination of high energy carbon heavy ion irradiation and sodium nitrite mutagenesis based on high throughput screening. Biotechnology Bioprocess Engineering, 2017. 22, 539-548. https://doi.org/10.1007/s12257-017-0022-6 DOI: https://doi.org/10.1007/s12257-017-0022-6

Tan, J., Chu, J., Hao, Y., et al. High-throughput system for screening of cephalosporin c high-yield strain by 48-deep-well microtiter plates. Appl Biochem Biotechnol, 2013. 169, 1683-1695. https://doi.org/10.1007/s12010-013-0095-4 DOI: https://doi.org/10.1007/s12010-013-0095-4

Liu, Y., Xue, Z. L., Chen, S. P., et al. A high-throughput screening strategy for accurate quantification of menaquinone based on fluorescence-activated cell sorting. J Ind Microbiol Biotechnol, 2016. 43, 751-760. https://doi.org/10.1007/s10295-016-1757-3 DOI: https://doi.org/10.1007/s10295-016-1757-3

Published

2024-09-01

How to Cite

Sun, B. (2024). Modification and Screening of Antibiotic-producing Strains. Innovation & Technology Advances, 2(2), 21–33. https://doi.org/10.61187/ita.v2i2.130