Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions

https://doi.org/10.61187/ita.v2i1.54

Authors

  • Feng Li National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin 300130, China
  • Hao Li National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin 300130, China

Keywords:

Tandem catalysis, highly efficient catalysis, active site, compartmentalisation effect

Abstract

Catalysis plays a key role in the production of fuels, industrial chemicals and the chemical transformation of fine chemicals. As society faces increasing environmental pollution and energy crises, tandem catalysis has attracted increasing attention as an outstanding model due to its sustainability and environmental friendliness. Compared with traditional stepwise synthesis methods, tandem catalysis not only can couple several different reactions together, but also does not require the separation of intermediates, which provides new ideas for improving reaction activity, regulating product selectivity and developing new methods for catalysis. In order to catalyse cascade reactions efficiently, it is crucial to design suitable multifunctional catalysts, which should contain at least two active sites and achieve spatial separation. Here, we introduce the realisation and application of spatial segregation of metal, acidic and basic sites with examples to provide further insight into the indispensable role of active site compartmentalisation effects in tandem catalysis. In addition, this study highlights the challenges and issues associated with such catalysts, emphasising the importance of effective catalyst enhancement and environmentally sustainable catalytic transformations. The results of the study are intended to provide guidance for the development of rational and efficient catalysts.

Downloads

Download data is not yet available.

References

Jagadeesan, D. Multifunctional nanocatalysts for tandem reactions: A leap toward sustainability. Applied Catalysis A: General, 2016, 511, 59-77. http://doi.org/10.1016/j.apcata.2015.11.033

Huang, Y.-B., Liang, J., Wang, X.-S., et al. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46 (1), 126-157. http://doi.org/10.1039/c6cs00250a.

Fogg, D. E., dos Santos, E. N. Tandem catalysis: a taxonomy and illustrative review. Coordination Chemistry Reviews, 2004, 248 (21-24), 2365-2379. http://doi.org/10.1016/j.ccr.2004.05.012.

Sheldon, R. A. Fundamentals of green chemistry: Efficiency in reaction design. Chem Soc Rev, 2012, 41 (4), 1437-51. http://doi.org/10.1039/c1cs15219j

Felpin, F. X., Fouquet, E. Heterogeneous multifunctional catalysts for tandem processes: an approach toward sustainability. Chem Sus Chem, 2008, 1 (8-9), 718-24. http://doi.org/10.1002/cssc.200800110.

Xie, C., Niu, Z., Kim, D., Li, M., Yang, P., Surface and Interface Control in Nanoparticle Catalysis. Chem Rev, 2020, 120 (2), 1184-1249. http://doi.org/10.1021/acs.chemrev.9b00220.

Yang, Y., Ren, D., Shang, C., et al. Site isolated Ru clusters and sulfoacids in a yolk-shell nanoreactor towards cellulose valorization to 1,2-propylene glycol. Chemical Engineering Journal, 2023, 452. http://doi.org/10.1016/j.cej.2022.139206.

Hronec, M., Fulajtarová, K., Liptaj, T. Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone. Applied Catalysis A: General, 2012, 437-438, 104-111. http://doi.org/10.1016/j.apcata.2012.06.018.

Kong, J., Xiang, Z., Li, G., et al. Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs. Applied Catalysis B: Environmental, 2020, 269. http://doi.org/10.1016/j.apcatb.2020.118755.

Yuan, E., Wang, C., Wu, C., et al. Constructing hierarchical structures of Pd catalysts to realize reaction pathway regulation of furfural hydroconversion. Journal of Catalysis, 2023, 421, 30-44. http://doi.org/10.1016/j.jcat.2023.03.009.

Helms, B., Guillaudeu, S. J., Xie, Y., et al. One-pot reaction cascades using star polymers with core-confined catalysts. Angew Chem Int Ed Engl, 2005, 44 (39), 6384-7. http://doi.org/10.1002/anie.200502095.

Lee, L.-C., Lu, J., Weck, M., et al. Acid–Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-Pot Tandem Reaction. ACS Catalysis, 2016, 6 (2), 784-787. http://doi.org/10.1021/acscatal.5b02538.

Yang, Y., Liu, X., Li, X., et al. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew Chem Int Ed Engl, 2012, 51 (36), 9164-8. http://doi.org/10.1002/anie.201204829.

Li, P., Cao, C. Y., Chen, Z., et al. Core-shell structured mesoporous silica as acid-base bifunctional catalyst with designated diffusion path for cascade reaction sequences. Chem Commun (Camb), 2012, 48 (85), 10541-3. http://doi.org/10.1039/c2cc35718f.

You, C., Yu, C., Yang, X., et al. Double-shelled hollow mesoporous silica nanospheres as an acid–base bifunctional catalyst for cascade reactions. New Journal of Chemistry, 2018, 42 (6), 4095-4101. http://doi.org/10.1039/c7nj04670g.

Yang, M., Bao, Y.-S., Zhou, M.-L., et al. An Efficient Bifunctional Core–Shell MIL-101(Cr)@MOF-867 Composite to Catalyze Deacetalization–Knoevenagel Tandem Reaction. Catalysis Letters, 2023.https://dx.doi.org/10.1007/s10562-022-04259-x. http://doi.org/10.1007/s10562-022-04259-x.

Puthiaraj, P., Chung, Y.-M., Ahn, W.-S. Dual-functionalized porous organic polymer as reusable catalyst for one-pot cascade C C bond-forming reactions. Molecular Catalysis, 2017, 441, 1-9. http://doi.org/10.1016/j.mcat.2017.08.002.

Shinde, D. B., Kandambeth, S., Pachfule, P., et al. Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chem Commun (Camb), 2015, 51 (2), 310-3. http://doi.org/10.1039/c4cc07104b.

Xu, L., Li, C.-g., Zhang, K., et al. Bifunctional Tandem Catalysis on Multilamellar Organic–Inorganic Hybrid Zeolites. ACS Catalysis, 2014, 4 (9), 2959-2968. http://doi.org/10.1021/cs500653p.

Toyao, T., Fujiwaki, M., Horiuchi, Y., et al. Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction. RSC Advances, 2013, 3 (44). http://doi.org/10.1039/c3ra44701d.

Zhang, Y., Wang, Y., Liu, L., et al. Robust Bifunctional Lanthanide Cluster Based Metal-Organic Frameworks (MOFs) for Tandem Deacetalization-Knoevenagel Reaction. Inorg Chem, 2018, 57 (4), 2193-2198. http://doi.org/10.1021/acs.inorgchem.7b03084.

Puthiaraj, P., Yu, K., Baeck, S.-H., et al. Cascade Knoevenagel condensation-chemoselective transfer hydrogenation catalyzed by Pd nanoparticles stabilized on amine-functionalized aromatic porous polymer. Catalysis Today, 2020, 352, 298-307. http://doi.org/10.1016/j.cattod.2019.09.004.

Zhao, M., Deng, K., He, L., et al. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J Am Chem Soc, 2014, 136 (5), 1738-41. http://doi.org/10.1021/ja411468e.

Jiang, W. L., Fu, Q. J., Yao, B. J., et al. Smart pH-Responsive Polymer-Tethered and Pd NP-Loaded NMOF as the Pickering Interfacial Catalyst for One-Pot Cascade Biphasic Reaction. ACS Appl Mater Interfaces, 2017, 9 (41), 36438-36446. http://doi.org/10.1021/acsami.7b12166.

Verde-Sesto, E., Merino, E., Rangel-Rangel, E., et al. Postfunctionalized Porous Polymeric Aromatic Frameworks with an Organocatalyst and a Transition Metal Catalyst for Tandem Condensation–Hydrogenation Reactions. ACS Sustainable Chemistry & Engineering, 2016, 4 (3), 1078-1084. http://doi.org/10.1021/acssuschemeng.5b01147.

Montolio, S., Vicent, C., Aseyev, V., et al. AuNP–Polymeric Ionic Liquid Composite Multicatalytic Nanoreactors for One-Pot Cascade Reactions. ACS Catalysis, 2016, 6 (10), 7230-7237. http://doi.org/10.1021/acscatal.6b01759.

Biradar, A. V., Patil, V. S., Chandra, P., et al. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions. Chem Commun (Camb), 2015, 51 (40), 8496-9. http://doi.org/10.1039/c5cc01694k.

Ke, S., Chang, G., Hu, Z., et al. Integrated-Trifunctional Single Catalyst with Fine Spatial Distribution via Stepwise Anchored Strategy for Multistep Autotandem Catalysis. ACS Sustainable Chemistry & Engineering, 2020, 8 (2), 966-976. http://doi.org/10.1021/acssuschemeng.9b05617.

Yao, Y., Huang, K., Liu, Y., et al. A hierarchically multifunctional integrated catalyst with intimate and synergistic active sites for one-pot tandem catalysis. Inorganic Chemistry Frontiers 2021, 8 (14), 3463-3472. http://doi.org/10.1039/d1qi00170a.

Zhang, L., Zhou, M., Wang, A., et al. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem Rev, 2020, 120 (2), 683-733. http://doi.org/10.1021/acs.chemrev.9b00230.

Rong, H., Ji, S., Zhang, J., et al. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat Commun, 2020, 11 (1), 5884. http://doi.org/10.1038/s41467-020-19571-6.

.

Wheeldon, I., Minteer, S. D., Banta, S., et al. Substrate channelling as an approach to cascade reactions. Nat Chem, 2016, 8 (4), 299-309. http://doi.org/10.1038/nchem.2459.

Wang, L., Guan, E., Zhang, J., et al. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nat Commun, 2018, 9 (1), 1362. http://doi.org/10.1038/s41467-018-03810-y.

Zhang, J., Gao, Z., Wang, S., et al. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nat Commun, 2019, 10 (1), 4166. http://doi.org/10.1038/s41467-019-11970-8.

Aitbekova, A., Goodman, E. D., Wu, L., et al. Engineering of Ruthenium–Iron Oxide Colloidal Heterostructures: Improved Yields in CO2 Hydrogenation to Hydrocarbons. Angewandte Chemie International Edition, 2019, 58 (48), 17451-17457. http://doi.org/10.1002/anie.201910579.

Wu, H., Zhang, B., Liang, H., et al. Distance Effect of Ni-Pt Dual Sites for Active Hydrogen Transfer in Tandem Reaction. The Innovation, 2020, 1 (2). http://doi.org/10.1016/j.xinn.2020.100029.

Zhang, J., Yu, Z., Gao, Z., et al. Porous TiO2 Nanotubes with Spatially Separated Platinum and CoOx Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie International Edition, 2016, 56 (3), 816-820. http://doi.org/10.1002/anie.201611137.

Ge, H., Zhang, B., Gu, X., et al. A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. Angewandte Chemie International Edition, 2016, 55 (25), 7081-7085. http://doi.org/10.1002/anie.201600799.

Zou, H., Dai, J., Suo, J., et al. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nat Commun, 2021, 12 (1), 4968. http://doi.org/10.1038/s41467-021-25226-x.

Komanoya, T., Kinemura, T., Kita, Y., et al. Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds. Journal of the American Chemical Society, 2017, 139 (33), 11493-11499. http://doi.org/10.1021/jacs.7b04481.

Published

2024-03-12

How to Cite

Li, F., & Li, H. (2024). Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions. Innovation & Technology Advances, 2(1), 1–13. https://doi.org/10.61187/ita.v2i1.54